Hyponormality of trigonometric Toeplitz operators
HTML articles powered by AMS MathViewer
- by In Sung Hwang and Woo Young Lee
- Trans. Amer. Math. Soc. 354 (2002), 2461-2474
- DOI: https://doi.org/10.1090/S0002-9947-02-02970-7
- Published electronically: February 14, 2002
- PDF | Request permission
Abstract:
In this paper we establish a tractable and explicit criterion for the hyponormality of arbitrary trigonometric Toeplitz operators, i.e., Toeplitz operators $T_{\varphi }$ with trigonometric polynomial symbols $\varphi$. Our criterion involves the zeros of an analytic polynomial $f$ induced by the Fourier coefficients of $\varphi$. Moreover the rank of the selfcommutator of $T_{\varphi }$ is computed from the number of zeros of $f$ in the open unit disk $\mathbb {D}$ and in $\mathbb {C}\setminus \overline {\mathbb {D}}$ counting multiplicity.References
- Arlen Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/64), 89–102. MR 160136, DOI 10.1007/978-1-4613-8208-9_{1}9
- Carl C. Cowen, Hyponormal and subnormal Toeplitz operators, Surveys of some recent results in operator theory, Vol. I, Pitman Res. Notes Math. Ser., vol. 171, Longman Sci. Tech., Harlow, 1988, pp. 155–167. MR 958573
- Carl C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), no. 3, 809–812. MR 947663, DOI 10.1090/S0002-9939-1988-0947663-4
- Carl C. Cowen and John J. Long, Some subnormal Toeplitz operators, J. Reine Angew. Math. 351 (1984), 216–220. MR 749683
- R.E. Curto and W.Y. Lee, Joint hyponormality of Toeplitz pairs, Memoirs Amer. Math. Soc. no. 712, Amer. Math. Soc., Providence, 2001.
- Peng Fan, Remarks on hyponormal trigonometric Toeplitz operators, Rocky Mountain J. Math. 13 (1983), no. 3, 489–493. MR 715772, DOI 10.1216/RMJ-1983-13-3-489
- Douglas R. Farenick and Woo Young Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996), no. 10, 4153–4174. MR 1363943, DOI 10.1090/S0002-9947-96-01683-2
- Douglas R. Farenick and Woo Young Lee, On hyponormal Toeplitz operators with polynomial and circulant-type symbols, Integral Equations Operator Theory 29 (1997), no. 2, 202–210. MR 1472100, DOI 10.1007/BF01191430
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- Cai Xing Gu, A generalization of Cowen’s characterization of hyponormal Toeplitz operators, J. Funct. Anal. 124 (1994), no. 1, 135–148. MR 1284607, DOI 10.1006/jfan.1994.1102
- P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887–933. MR 270173, DOI 10.1090/S0002-9904-1970-12502-2
- P. R. Halmos, Ten years in Hilbert space, Integral Equations Operator Theory 2 (1979), no. 4, 529–564. MR 555777, DOI 10.1007/BF01691076
- In Sung Hwang, In Hyoun Kim, and Woo Young Lee, Hyponormality of Toeplitz operators with polynomial symbols, Math. Ann. 313 (1999), no. 2, 247–261. MR 1679785, DOI 10.1007/s002080050260
- Takashi Itô and Tin Kin Wong, Subnormality and quasinormality of Toeplitz operators, Proc. Amer. Math. Soc. 34 (1972), 157–164. MR 303334, DOI 10.1090/S0002-9939-1972-0303334-7
- Erich Rothe, Topological proofs of uniqueness theorems in the theory of differential and integral equations, Bull. Amer. Math. Soc. 45 (1939), 606–613. MR 93, DOI 10.1090/S0002-9904-1939-07048-1
- I. Schur, Über Potenzreihen die im Innern des Einheitskreises beschränkt sind, J. Reine Angew. Math. 147 (1917), 205–232.
- Ke He Zhu, Hyponormal Toeplitz operators with polynomial symbols, Integral Equations Operator Theory 21 (1995), no. 3, 376–381. MR 1316550, DOI 10.1007/BF01299971
Bibliographic Information
- In Sung Hwang
- Affiliation: Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea
- MR Author ID: 628053
- Email: ishwang@math.skku.ac.kr
- Woo Young Lee
- Affiliation: Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea
- MR Author ID: 263789
- Email: wylee@yurim.skku.ac.kr
- Received by editor(s): October 19, 2000
- Published electronically: February 14, 2002
- Additional Notes: This work was partially supported by KOSEF research project No. R01-2000-00003.
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 2461-2474
- MSC (2000): Primary 47B20, 47B35
- DOI: https://doi.org/10.1090/S0002-9947-02-02970-7
- MathSciNet review: 1888332
Dedicated: Dedicated to Professor Yong Tae Kim on his 65th birthday