Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Partial regularity for the stochastic Navier-Stokes equations
HTML articles powered by AMS MathViewer

by Franco Flandoli and Marco Romito PDF
Trans. Amer. Math. Soc. 354 (2002), 2207-2241 Request permission

Abstract:

The effects of random forces on the emergence of singularities in the Navier-Stokes equations are investigated. In spite of the presence of white noise, the paths of a martingale suitable weak solution have a set of singular points of one-dimensional Hausdorff measure zero. Furthermore statistically stationary solutions with finite mean dissipation rate are analysed. For these stationary solutions it is proved that at any time $t$ the set of singular points is empty. The same result holds true for every martingale solution starting from $\mu _0$-a.e. initial condition $u_0$, where $\mu _0$ is the law at time zero of a stationary solution. Finally, the previous result is non-trivial when the noise is sufficiently non-degenerate, since for any stationary solution, the measure $\mu _0$ is supported on the whole space $H$ of initial conditions.
References
  • John B. Bell and Daniel L. Marcus, Vorticity intensification and transition to turbulence in the three-dimensional Euler equations, Comm. Math. Phys. 147 (1992), no. 2, 371–394. MR 1174419
  • L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), no. 6, 771–831. MR 673830, DOI 10.1002/cpa.3160350604
  • Alexandre Joel Chorin, The evolution of a turbulent vortex, Comm. Math. Phys. 83 (1982), no. 4, 517–535. MR 649815
  • Alexandre J. Chorin, Vorticity and turbulence, Applied Mathematical Sciences, vol. 103, Springer-Verlag, New York, 1994. MR 1281384, DOI 10.1007/978-1-4419-8728-0
  • Giuseppe Da Prato and Jerzy Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992. MR 1207136, DOI 10.1017/CBO9780511666223
  • Guy David and Stephen Semmes, Fractured fractals and broken dreams, Oxford Lecture Series in Mathematics and its Applications, vol. 7, The Clarendon Press, Oxford University Press, New York, 1997. Self-similar geometry through metric and measure. MR 1616732
  • Franco Flandoli, Stochastic differential equations in fluid dynamics, Rend. Sem. Mat. Fis. Milano 66 (1996), 121–148 (1998). MR 1639835, DOI 10.1007/BF02925357
  • Franco Flandoli, Irreducibility of the $3$-D stochastic Navier-Stokes equation, J. Funct. Anal. 149 (1997), no. 1, 160–177. MR 1471103, DOI 10.1006/jfan.1996.3089
  • F. Flandoli, M. Romito, Statistically stationary solutions to the 3D Navier-Stokes equations do not show singularities, Elec. J. Prob. 6 (2001), no. 5 (electronic)
  • G. Gallavotti, Ipotesi per una introduzione alla Meccanica dei Fluidi, Quaderni del CNR-GNFM 52, Roma 1996.
  • R. Grauer, T. Sideris, Numerical computation of 3D incompressible ideal fluids with swirl, Phys. Rev. Lett. 67 (1991), 3511–3514.
  • Robert M. Kerr, Evidence for a singularity of the three-dimensional, incompressible Euler equations, Phys. Fluids A 5 (1993), no. 7, 1725–1746. MR 1223050, DOI 10.1063/1.858849
  • Leonard Eugene Dickson, New First Course in the Theory of Equations, John Wiley & Sons, Inc., New York, 1939. MR 0000002
  • Oscar E. Lanford III, Time evolution of large classical systems, Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974) Lecture Notes in Phys., Vol. 38, Springer, Berlin, 1975, pp. 1–111. MR 0479206
  • J. Leray, Essai sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63 (1934), 193–248.
  • Benoit Mandelbrot, Les objets fractals, Nouvelle Bibliothèque Scientifique, Flammarion, Éditeur, Paris, 1975 (French). Forme, hasard et dimension. MR 0462040
  • Benoit Mandelbrot, Intermittent turbulence and fractal dimension: kurtosis and the spectral exponent $5/3+B$, Turbulence and Navier-Stokes equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975) Lecture Notes in Math., Vol. 565, Springer, Berlin, 1976, pp. 121–145. MR 0495674
  • J. Nečas, M. Růžička, and V. Šverák, On Leray’s self-similar solutions of the Navier-Stokes equations, Acta Math. 176 (1996), no. 2, 283–294. MR 1397564, DOI 10.1007/BF02551584
  • M. Romito, Existence of martingale and stationary suitable weak solutions for a stochastic Navier-Stokes system, Preprint, Quad. Dip. U. Dini, Firenze (2000).
  • M. Romito, Partial regularity theory for a stochastic Navier-Stokes system, Thesis, Pisa (2000).
  • Vladimir Scheffer, Turbulence and Hausdorff dimension, Turbulence and Navier-Stokes equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975) Lecture Notes in Math., Vol. 565, Springer, Berlin, 1976, pp. 174–183. MR 0452123
  • Vladimir Scheffer, Partial regularity of solutions to the Navier-Stokes equations, Pacific J. Math. 66 (1976), no. 2, 535–552. MR 454426
  • Vladimir Scheffer, Hausdorff measure and the Navier-Stokes equations, Comm. Math. Phys. 55 (1977), no. 2, 97–112. MR 510154
  • Vladimir Scheffer, The Navier-Stokes equations in space dimension four, Comm. Math. Phys. 61 (1978), no. 1, 41–68. MR 501249
  • Vladimir Scheffer, A solution to the Navier-Stokes inequality with an internal singularity, Comm. Math. Phys. 101 (1985), no. 1, 47–85. MR 814542
  • Vladimir Scheffer, Solutions to the Navier-Stokes inequality with singularities on a Cantor set, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984) Proc. Sympos. Pure Math., vol. 44, Amer. Math. Soc., Providence, RI, 1986, pp. 359–367. MR 840286, DOI 10.1090/pspum/044/840286
  • Vladimir Scheffer, Nearly one-dimensional singularities of solutions to the Navier-Stokes inequality, Comm. Math. Phys. 110 (1987), no. 4, 525–551. MR 895215
  • James Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 9 (1962), 187–195. MR 136885, DOI 10.1007/BF00253344
  • James Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems (Proc. Sympos., Madison, Wis., 1962) Univ. Wisconsin Press, Madison, Wis., 1963, pp. 69–98. MR 0150444
  • Ra. Siegmund-Schultze, On nonequilibrium dynamics of multidimensional infinite particle systems in the translation invariant case, Comm. Math. Phys. 100 (1985), no. 2, 245–265. MR 804462
  • V. A. Solonnikov, Estimates for solutions of a non-stationary linearized system of Navier-Stokes equations, Trudy Mat. Inst. Steklov. 70 (1964), 213–317 (Russian). MR 0171094
  • Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • Roger Temam, Navier-Stokes equations. Theory and numerical analysis, Studies in Mathematics and its Applications, Vol. 2, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. MR 0609732
  • Roger Temam, Navier-Stokes equations and nonlinear functional analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983. MR 764933
  • Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. MR 953967, DOI 10.1007/978-1-4684-0313-8
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 76D05, 35A20, 35R60
  • Retrieve articles in all journals with MSC (2000): 76D05, 35A20, 35R60
Additional Information
  • Franco Flandoli
  • Affiliation: Dipartimento di Matematica Applicata, Università di Pisa, Via Bonanno 25/b, 56126 Pisa, Italia
  • Email: flandoli@dma.unipi.it
  • Marco Romito
  • Affiliation: Dipartimento di Matematica, Università di Firenze, Viale Morgagni 67/a, 50134 Firenze, Italia
  • Email: romito@math.unifi.it
  • Received by editor(s): January 11, 2001
  • Received by editor(s) in revised form: July 21, 2001
  • Published electronically: February 14, 2002
  • © Copyright 2002 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 354 (2002), 2207-2241
  • MSC (2000): Primary 76D05; Secondary 35A20, 35R60
  • DOI: https://doi.org/10.1090/S0002-9947-02-02975-6
  • MathSciNet review: 1885650