Three-divisible families of skew lines on a smooth projective quintic
HTML articles powered by AMS MathViewer
- by Sławomir Rams
- Trans. Amer. Math. Soc. 354 (2002), 2359-2367
- DOI: https://doi.org/10.1090/S0002-9947-02-02979-3
- Published electronically: February 7, 2002
- PDF | Request permission
Abstract:
We give an example of a family of 15 skew lines on a quintic such that its class is divisible by 3. We study properties of the codes given by arrangements of disjoint lines on quintics.References
- W. Barth: Even sets of eight skew lines on a K3 surface, preprint.
- W. Barth and I. Nieto, Abelian surfaces of type $(1,3)$ and quartic surfaces with $16$ skew lines, J. Algebraic Geom. 3 (1994), no. 2, 173–222. MR 1257320
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
- Arnaud Beauville, Sur le nombre maximum de points doubles d’une surface dans $\textbf {P}^{3}$ $(\mu (5)=31)$, Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 207–215 (French). MR 605342
- Lucia Caporaso, Joe Harris, and Barry Mazur, How many rational points can a curve have?, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 13–31. MR 1363052, DOI 10.1007/978-1-4612-4264-2_{2}
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Sheng-Li Tan: Cusps on some algebraic surfaces, preprint, 1999.
- Rick Miranda, Triple covers in algebraic geometry, Amer. J. Math. 107 (1985), no. 5, 1123–1158. MR 805807, DOI 10.2307/2374349
- Yoichi Miyaoka, The maximal number of quotient singularities on surfaces with given numerical invariants, Math. Ann. 268 (1984), no. 2, 159–171. MR 744605, DOI 10.1007/BF01456083
- V. V. Nikulin, Kummer surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 2, 278–293, 471 (Russian). MR 0429917
- J. H. van Lint, Introduction to coding theory, 2nd ed., Graduate Texts in Mathematics, vol. 86, Springer-Verlag, Berlin, 1992. MR 1217490, DOI 10.1007/978-3-662-00174-5
- D. van Straten: Macaulay script to estimate the number of lines on a surface with some examples of surfaces.
- Albert Eagle, Series for all the roots of the equation $(z-a)^m=k(z-b)^n$, Amer. Math. Monthly 46 (1939), 425–428. MR 6, DOI 10.2307/2303037
Bibliographic Information
- Sławomir Rams
- Affiliation: Institute of Mathematics, Jagiellon University, Reymonta 4, PL-30-059 Kraków, Poland
- Address at time of publication: Mathematisches Institut, FAU Erlangen-Nürnberg, Bismarckstrasse 1 1/2, D-91054 Erlangen, Germany
- Email: rams@mi.uni-erlangen.de and rams@im.uj.edu.pl
- Received by editor(s): December 31, 2000
- Published electronically: February 7, 2002
- Additional Notes: This research was supported by DFG contract BA 423/8-1
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 2359-2367
- MSC (2000): Primary 14M99; Secondary 14E20
- DOI: https://doi.org/10.1090/S0002-9947-02-02979-3
- MathSciNet review: 1885656