Surfaces with $p_g=q=3$
Authors:
Christopher D. Hacon and Rita Pardini
Journal:
Trans. Amer. Math. Soc. 354 (2002), 2631-2638
MSC (2000):
Primary 14J29
DOI:
https://doi.org/10.1090/S0002-9947-02-02891-X
Published electronically:
March 14, 2002
MathSciNet review:
1895196
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We classify minimal complex surfaces of general type with $p_g=q=3$. More precisely, we show that such a surface is either the symmetric product of a curve of genus $3$ or a free $\mathbb {Z}_2-$quotient of the product of a curve of genus $2$ and a curve of genus $3$. Our main tools are the generic vanishing theorems of Green and Lazarsfeld and the characterization of theta divisors given by Hacon in Corollary 3.4 of Fourier transforms, generic vanishing theorems and polarizations of abelian varieties.
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932
- Arnaud Beauville, Annulation du $H^1$ pour les fibrés en droites plats, Complex algebraic varieties (Bayreuth, 1990) Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992, pp. 1–15 (French). MR 1178716, DOI https://doi.org/10.1007/BFb0094507
- A. Beauville, L’inegalité $p_g\ge 2q-4$ pour les surfaces de type général, Appendix to [O. Debarre, Inégalités numériques pour les surfaces de type général, Bull. Soc. Math. France 110 (1982), 319–342], Bull. Soc. Math. France 110 (1982), 343–346.
- Fabrizio Catanese, Ciro Ciliberto, and Margarida Mendes Lopes, On the classification of irregular surfaces of general type with nonbirational bicanonical map, Trans. Amer. Math. Soc. 350 (1998), no. 1, 275–308. MR 1422597, DOI https://doi.org/10.1090/S0002-9947-98-01948-5
- O. Debarre, Inégalités numériques pour les surfaces de type général, Bull. Soc. Math. France 110 (1982), no. 3, 319–346 (French, with English summary). With an appendix by A. Beauville. MR 688038
- Lawrence Ein and Robert Lazarsfeld, Singularities of theta divisors and the birational geometry of irregular varieties, J. Amer. Math. Soc. 10 (1997), no. 1, 243–258. MR 1396893, DOI https://doi.org/10.1090/S0894-0347-97-00223-3
- Mark Green and Robert Lazarsfeld, Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987), no. 2, 389–407. MR 910207, DOI https://doi.org/10.1007/BF01388711
- Mark Green and Robert Lazarsfeld, Higher obstructions to deforming cohomology groups of line bundles, J. Amer. Math. Soc. 4 (1991), no. 1, 87–103. MR 1076513, DOI https://doi.org/10.1090/S0894-0347-1991-1076513-1
- Christopher D. Hacon, Fourier transforms, generic vanishing theorems and polarizations of abelian varieties, Math. Z. 235 (2000), no. 4, 717–726. MR 1801582, DOI https://doi.org/10.1007/s002090000162
- C. Hacon, R. Pardini On the birational geometry of varieties of maximal Albanese dimension, J. reine angew. Math. (to appear)
- Herbert Lange and Christina Birkenhake, Complex abelian varieties, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 1992. MR 1217487
- Rita Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math. 417 (1991), 191–213. MR 1103912, DOI https://doi.org/10.1515/crll.1991.417.191
- G. P. Pirola, Surfaces with $p_g=q=3$, Manuscripta Mathematica (to appear)
- Fernando Serrano, Isotrivial fibred surfaces, Ann. Mat. Pura Appl. (4) 171 (1996), 63–81. MR 1441865, DOI https://doi.org/10.1007/BF01759382
- Carlos Simpson, Subspaces of moduli spaces of rank one local systems, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 3, 361–401. MR 1222278
- Gang Xiao, Surfaces fibrées en courbes de genre deux, Lecture Notes in Mathematics, vol. 1137, Springer-Verlag, Berlin, 1985 (French). MR 872271
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14J29
Retrieve articles in all journals with MSC (2000): 14J29
Additional Information
Christopher D. Hacon
Affiliation:
Department of Mathematics, Surge Bldg., 2nd floor, University of California, Riverside, California 92521-0135
MR Author ID:
613883
Email:
hacon@math.ucr.edu
Rita Pardini
Affiliation:
Dipartimento di Matematica, Università di Pisa, Via Buonarroti, 2, 56127 Pisa, Italy
Email:
pardini@dm.unipi.it
Received by editor(s):
March 5, 2001
Published electronically:
March 14, 2002
Article copyright:
© Copyright 2002
American Mathematical Society