Regularity properties of solutions of a class of elliptic-parabolic nonlinear Levi type equations
HTML articles powered by AMS MathViewer
- by G. Citti and A. Montanari
- Trans. Amer. Math. Soc. 354 (2002), 2819-2848
- DOI: https://doi.org/10.1090/S0002-9947-02-02928-8
- Published electronically: February 14, 2002
- PDF | Request permission
Abstract:
In this paper we prove the smoothness of solutions of a class of elliptic-parabolic nonlinear Levi type equations, represented as a sum of squares plus a vector field. By means of a freezing method the study of the operator is reduced to the analysis of a family $L_{\xi _0}$ of left invariant operators on a free nilpotent Lie group. The fundamental solution $\Gamma _{\xi _0}$ of the operator $L_{\xi _0}$ is used as a parametrix of the fundamental solution of the Levi operator, and provides an explicit representation formula for the solution of the given equation. Differentiating this formula and applying a bootstrap method, we prove that the solution is $C^\infty$.References
- Eric Bedford and Bernard Gaveau, Envelopes of holomorphy of certain $2$-spheres in $\textbf {C}^{2}$, Amer. J. Math. 105 (1983), no. 4, 975–1009. MR 708370, DOI 10.2307/2374301
- Eric Bedford and Wilhelm Klingenberg, On the envelope of holomorphy of a $2$-sphere in $\textbf {C}^2$, J. Amer. Math. Soc. 4 (1991), no. 3, 623–646. MR 1094437, DOI 10.1090/S0894-0347-1991-1094437-0
- E. M. Chirka and N. V. Shcherbina, Pseudoconvexity of rigid domains and foliations of hulls of graphs, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), no. 4, 707–735. MR 1375316
- G. Citti, $C^\infty$ regularity of solutions of a quasilinear equation related to the Levi operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), no. 3, 483–529. MR 1440031
- G. Citti, Regolarità di grafici non Levi-piatti, Seminario di Analisi, Dip. Mat. Univ. Bologna (A.A. 1996/97), Tecnoprint, Bologna, 186-195.
- G. Citti, A. Montanari, Analytic estimates of solutions of the Levi equation, J. Differential Equations, 173, (2001), 356-389.
- G. Citti, A. Montanari, $C^\infty$ regularity of solutions of an equation of Levi’s type in $R^{2n+1}$, Annali di Matematica Pura Appl. (4), 180, (2001), 27-58
- G. Citti, A. Pascucci, S. Polidoro, On the regularity of solutions to a nonlinear ultraparabolic equation in mathematical finance, Diff. Int. Eq, 14 (2001), 701-738.
- G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), no. 2, 161–207. MR 494315, DOI 10.1007/BF02386204
- G. B. Folland and E. M. Stein, Estimates for the $\bar \partial _{b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522. MR 367477, DOI 10.1002/cpa.3160270403
- Bruno Franchi and Ermanno Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), no. 4, 523–541. MR 753153
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI 10.1007/BF02392081
- Gerhard Huisken and Wilhelm Klingenberg, Flow of real hypersurfaces by the trace of the Levi form, Math. Res. Lett. 6 (1999), no. 5-6, 645–661. MR 1739222, DOI 10.4310/MRL.1999.v6.n6.a5
- W. Klingenberg, Real hypersurfaces in Kähler manifolds preprint.
- A. Montanari, Real hypersurfaces evolving by Levi curvature: smooth regularity of solutions to the parabolic Levi equation, to appear in Comm. Partial Differential Equations 26 (9&10) (2001) 1633-1664.
- Alexander Nagel, Elias M. Stein, and Stephen Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math. 155 (1985), no. 1-2, 103–147. MR 793239, DOI 10.1007/BF02392539
- Linda Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247–320. MR 436223, DOI 10.1007/BF02392419
- N. V. Shcherbina, On the polynomial hull of a graph, Indiana Univ. Math. J. 42 (1993), no. 2, 477–503. MR 1237056, DOI 10.1512/iumj.1993.42.42022
- Zbigniew Slodkowski and Giuseppe Tomassini, Weak solutions for the Levi equation and envelope of holomorphy, J. Funct. Anal. 101 (1991), no. 2, 392–407. MR 1136942, DOI 10.1016/0022-1236(91)90164-Z
- Yongjing Lü and Zhongtai Ma, $L^s$-norm estimates of solutions for the inhomogeneous Cauchy-Riemann equation, Chinese Quart. J. Math. 13 (1998), no. 2, 10–15. MR 1696510
- Z. Slodkowski and G. Tomassini, Evolution of special subsets of $\mathbf C^2$, Adv. Math. 152 (2000), no. 2, 336–358. MR 1764108, DOI 10.1006/aima.1999.1905
- Z. Slodkowski, G. Tomassini, Evolution of a graph by Levi form, Gulliver, Robert (ed.) et al., Differential geometric methods in the control of partial differential equations. (Boulder, CO, 1999), Providence, RI: American Mathematical Society (AMS). Contemp. Math. 268, 373-382 (2000).
Bibliographic Information
- G. Citti
- Affiliation: Dipartimento di Matematica, Universita di Bologna, Piazza di Porta S. Donato 5, 40127, Bologna, Italy
- Email: citti@dm.unibo.it
- A. Montanari
- Affiliation: Dipartimento di Matematica, Universita di Bologna, Piazza di Porta S. Donato 5, 40127, Bologna, Italy
- Email: montanar@dm.unibo.it
- Received by editor(s): May 3, 2000
- Received by editor(s) in revised form: August 8, 2001
- Published electronically: February 14, 2002
- Additional Notes: Investigation supported by University of Bologna, founds for selected research topics.
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 2819-2848
- MSC (2000): Primary 35J70, 35K65; Secondary 22E30
- DOI: https://doi.org/10.1090/S0002-9947-02-02928-8
- MathSciNet review: 1895205