A Pieri-type formula for isotropic flag manifolds
Authors:
Nantel Bergeron and Frank Sottile
Journal:
Trans. Amer. Math. Soc. 354 (2002), 2659-2705
MSC (2000):
Primary 14M15, 05E15, 05E05, 06A07, 14N10
DOI:
https://doi.org/10.1090/S0002-9947-02-02946-X
Published electronically:
February 20, 2002
MathSciNet review:
1895198
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We give the formula for multiplying a Schubert class on an odd orthogonal or symplectic flag manifold by a special Schubert class pulled back from the Grassmannian of maximal isotropic subspaces. This is also the formula for multiplying a type $B$ (respectively, type $C$) Schubert polynomial by the Schur $P$-polynomial $p_m$ (respectively, the Schur $Q$-polynomial $q_m$). Geometric constructions and intermediate results allow us to ultimately deduce this formula from formulas for the classical flag manifold. These intermediate results are concerned with the Bruhat order of the infinite Coxeter group ${\mathcal B}_\infty$, identities of the structure constants for the Schubert basis of cohomology, and intersections of Schubert varieties. We show that most of these identities follow from the Pieri-type formula, and our analysis leads to a new partial order on the Coxeter group ${\mathcal B}_\infty$ and formulas for many of these structure constants.
- Nantel Bergeron and Sara Billey, RC-graphs and Schubert polynomials, Experiment. Math. 2 (1993), no. 4, 257–269. MR 1281474
- N. Bergeron, S. Mykytiuk, F. Sottile, and S. van Willigenburg, Non-commutative Pieri operations on posets, J. Combin. Th. Ser. A, 91 (2000), 84–110.
- Nantel Bergeron and Frank Sottile, Schubert polynomials, the Bruhat order, and the geometry of flag manifolds, Duke Math. J. 95 (1998), no. 2, 373–423. MR 1652021, DOI https://doi.org/10.1215/S0012-7094-98-09511-4
- Nantel Bergeron and Frank Sottile, Hopf algebras and edge-labeled posets, J. Algebra 216 (1999), no. 2, 641–651. MR 1692973, DOI https://doi.org/10.1006/jabr.1998.7794
- Nantel Bergeron and Frank Sottile, A monoid for the Grassmannian Bruhat order, European J. Combin. 20 (1999), no. 3, 197–211. MR 1687251, DOI https://doi.org/10.1006/eujc.1999.0283
- I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, Schubert cells and cohomology of the spaces $G/P$, Russian Mathematical Surveys, 28 (1973), pp. 1–26.
- Sara Billey and Mark Haiman, Schubert polynomials for the classical groups, J. Amer. Math. Soc. 8 (1995), no. 2, 443–482. MR 1290232, DOI https://doi.org/10.1090/S0894-0347-1995-1290232-1
- Howard Hiller and Brian Boe, Pieri formula for ${\rm SO}_{2n+1}/{\rm U}_n$ and ${\rm Sp}_n/{\rm U}_n$, Adv. in Math. 62 (1986), no. 1, 49–67. MR 859253, DOI https://doi.org/10.1016/0001-8708%2886%2990087-3
- A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes des groupes de Lie compacts, Ann. Math., 57 (1953), pp. 115–207.
- C. Chevalley, Sur les décompositions cellulaires des espaces $G/B$, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 1–23 (French). With a foreword by Armand Borel. MR 1278698
- Michel Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53–88 (French). MR 354697
- Vinay V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985), no. 3, 499–511. MR 782232, DOI https://doi.org/10.1007/BF01388520
- Dan Edidin and William Graham, Characteristic classes and quadric bundles, Duke Math. J. 78 (1995), no. 2, 277–299. MR 1333501, DOI https://doi.org/10.1215/S0012-7094-95-07812-0
- Sergey Fomin and Anatol N. Kirillov, Combinatorial $B_n$-analogues of Schubert polynomials, Trans. Amer. Math. Soc. 348 (1996), no. 9, 3591–3620. MR 1340174, DOI https://doi.org/10.1090/S0002-9947-96-01558-9
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620
- William Fulton, Determinantal formulas for orthogonal and symplectic degeneracy loci, J. Differential Geom. 43 (1996), no. 2, 276–290. MR 1424427
- William Fulton and Piotr Pragacz, Schubert varieties and degeneracy loci, Lecture Notes in Mathematics, vol. 1689, Springer-Verlag, Berlin, 1998. Appendix J by the authors in collaboration with I. Ciocan-Fontanine. MR 1639468
- Tadeusz Józefiak, Schur $Q$-functions and cohomology of isotropic Grassmannians, Math. Proc. Cambridge Philos. Soc. 109 (1991), no. 3, 471–478. MR 1094746, DOI https://doi.org/10.1017/S0305004100069917
- Steven L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297. MR 360616
- M. Kogan and A. Kumar, A proof of Pieri’s formula using generalized Schensted insertion algorithm for $RC$-graphs, arXiv.math.CO/0010109.
- G. Kreweras, Sur les partitions non croisées d’un cycle, Discrete Math. 1 (1972), no. 4, 333–350 (French). MR 309747, DOI https://doi.org/10.1016/0012-365X%2872%2990041-6
- Alain Lascoux and Marcel-Paul Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 13, 447–450 (French, with English summary). MR 660739
- Alain Lascoux and Marcel-Paul Schützenberger, Symmetry and flag manifolds, Invariant theory (Montecatini, 1982) Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 118–144. MR 718129, DOI https://doi.org/10.1007/BFb0063238
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Alexander Postnikov, On a quantum version of Pieri’s formula, Advances in geometry, Progr. Math., vol. 172, Birkhäuser Boston, Boston, MA, 1999, pp. 371–383. MR 1667687
- A. Postnikov, Symmetries of Gromov-Witten invariants. Advances in Algebraic Geometry Motivated by Physics, E.Previato, ed., Contemp. Math., 276, AMS, 2001. 251–258.
- Piotr Pragacz, Algebro-geometric applications of Schur $S$- and $Q$-polynomials, Topics in invariant theory (Paris, 1989/1990) Lecture Notes in Math., vol. 1478, Springer, Berlin, 1991, pp. 130–191. MR 1180989, DOI https://doi.org/10.1007/BFb0083503
- Piotr Pragacz and Jan Ratajski, A Pieri-type formula for ${\rm Sp}(2m)/P$ and ${\rm SO}(2m+1)/P$, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 11, 1035–1040 (English, with English and French summaries). MR 1249784
- Piotr Pragacz and Jan Ratajski, A Pieri-type theorem for Lagrangian and odd orthogonal Grassmannians, J. Reine Angew. Math. 476 (1996), 143–189. MR 1401699
- ---, A Pieri-type theorem for even orthogonal Grassmannians. Max-Planck Institut preprint, 1996.
- P. Pragacz and J. Ratajski, Formulas for Lagrangian and orthogonal degeneracy loci; $\~Q$-polynomial approach, Compositio Math. 107 (1997), no. 1, 11–87. MR 1457343, DOI https://doi.org/10.1023/A%3A1000182205320
- Frank Sottile, Pieri’s formula for flag manifolds and Schubert polynomials, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 89–110 (English, with English and French summaries). MR 1385512
- Frank Sottile, Pieri-type formulas for maximal isotropic Grassmannians via triple intersections, Colloq. Math. 82 (1999), no. 1, 49–63. MR 1736034, DOI https://doi.org/10.4064/cm-82-1-49-63
- John R. Stembridge, Shifted tableaux and the projective representations of symmetric groups, Adv. Math. 74 (1989), no. 1, 87–134. MR 991411, DOI https://doi.org/10.1016/0001-8708%2889%2990005-4
- John R. Stembridge, Enriched $P$-partitions, Trans. Amer. Math. Soc. 349 (1997), no. 2, 763–788. MR 1389788, DOI https://doi.org/10.1090/S0002-9947-97-01804-7
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14M15, 05E15, 05E05, 06A07, 14N10
Retrieve articles in all journals with MSC (2000): 14M15, 05E15, 05E05, 06A07, 14N10
Additional Information
Nantel Bergeron
Affiliation:
Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P3, Canada
Email:
bergeron@mathstat.yorku.ca
Frank Sottile
Affiliation:
Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003
MR Author ID:
355336
ORCID:
0000-0003-0087-7120
Email:
sottile@math.umass.edu
Received by editor(s):
March 7, 2001
Received by editor(s) in revised form:
August 6, 2001
Published electronically:
February 20, 2002
Additional Notes:
First author supported in part by NSERC and CRM grants.
Second author supported in part by NSERC grant OGP0170279 and NSF grant DMS-9022140.
Article copyright:
© Copyright 2002
American Mathematical Society