A priori degeneracy of one-dimensional rotation sets for periodic point free torus maps
Author:
Jaroslaw Kwapisz
Journal:
Trans. Amer. Math. Soc. 354 (2002), 2865-2895
MSC (1991):
Primary 37E45, 37E30
DOI:
https://doi.org/10.1090/S0002-9947-02-02952-5
Published electronically:
March 7, 2002
MathSciNet review:
1895207
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Diffeomorphisms of the two torus that are isotopic to the identity have rotation sets that are convex compact subsets of the plane. We show that certain line segments (including all rationally sloped segments with no rational points) cannot be realized as a rotation set.
- Lars V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. Manuscript prepared with the assistance of Clifford J. Earle, Jr. MR 0200442
- Lluís Alsedà, Jaume Llibre, and Michał Misiurewicz, Combinatorial dynamics and entropy in dimension one, Advanced Series in Nonlinear Dynamics, vol. 5, World Scientific Publishing Co., Inc., River Edge, NJ, 1993. MR 1255515
- C. Baesens, J. Guckenheimer, S. Kim, and R. S. MacKay, Three coupled oscillators: mode-locking, global bifurcations and toroidal chaos, Phys. D 49 (1991), no. 3, 387–475. MR 1115870, DOI https://doi.org/10.1016/0167-2789%2891%2990155-3
- G. E. Bredon, Topology and geometry, Springer, New York, 1993.
- Patrice Le Calvez, Propriétés dynamiques des difféomorphismes de l’anneau et du tore, Astérisque 204 (1991), 131 (French, with English and French summaries). MR 1183304
- John Franks, Realizing rotation vectors for torus homeomorphisms, Trans. Amer. Math. Soc. 311 (1989), no. 1, 107–115. MR 958891, DOI https://doi.org/10.1090/S0002-9947-1989-0958891-1
- John Franks, A new proof of the Brouwer plane translation theorem, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 217–226. MR 1176619, DOI https://doi.org/10.1017/S0143385700006702
- John Franks, The rotation set and periodic points for torus homeomorphisms, Dynamical systems and chaos, Vol. 1 (Hachioji, 1994) World Sci. Publ., River Edge, NJ, 1995, pp. 41–48. MR 1479903
- John Franks, Rotation vectors and fixed points of area preserving surface diffeomorphisms, Trans. Amer. Math. Soc. 348 (1996), no. 7, 2637–2662. MR 1325916, DOI https://doi.org/10.1090/S0002-9947-96-01502-4
- John Franks and Michał Misiurewicz, Rotation sets of toral flows, Proc. Amer. Math. Soc. 109 (1990), no. 1, 243–249. MR 1021217, DOI https://doi.org/10.1090/S0002-9939-1990-1021217-5
- David Fried, The geometry of cross sections to flows, Topology 21 (1982), no. 4, 353–371. MR 670741, DOI https://doi.org/10.1016/0040-9383%2882%2990017-9
- Michael Handel, Periodic point free homeomorphism of $T^2$, Proc. Amer. Math. Soc. 107 (1989), no. 2, 511–515. MR 965243, DOI https://doi.org/10.1090/S0002-9939-1989-0965243-2
- Michael-R. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnol′d et de Moser sur le tore de dimension $2$, Comment. Math. Helv. 58 (1983), no. 3, 453–502 (French). MR 727713, DOI https://doi.org/10.1007/BF02564647
- Michael Herman, Some open problems in dynamical systems, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 1998, pp. 797–808. MR 1648127
- Russell A. Johnson, Ergodic theory and linear differential equations, J. Differential Equations 28 (1978), no. 1, 23–34. MR 487484, DOI https://doi.org/10.1016/0022-0396%2878%2990077-3
- R. Johnson and J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys. 84 (1982), no. 3, 403–438. MR 667409
- Leo B. Jonker and Lei Zhang, Torus homeomorphisms whose rotation sets have empty interior, Ergodic Theory Dynam. Systems 18 (1998), no. 5, 1173–1185. MR 1653236, DOI https://doi.org/10.1017/S0143385798117959
- Jaroslaw Kwapisz, Every convex polygon with rational vertices is a rotation set, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 333–339. MR 1176627, DOI https://doi.org/10.1017/S0143385700006787
- ---, Rotation sets and entropy, SUNY at Stony Brook PhD thesis, 1995.
- Jaroslaw Kwapisz, A toral diffeomorphism with a nonpolygonal rotation set, Nonlinearity 8 (1995), no. 4, 461–476. MR 1342499
- Jaroslaw Kwapisz, Poincaré rotation number for maps of the real line with almost periodic displacement, Nonlinearity 13 (2000), no. 5, 1841–1854. MR 1781820, DOI https://doi.org/10.1088/0951-7715/13/5/320
- ---, Combinatorics of torus diffeomorphisms, to be published in Erg. Th. & Dyn. Sys., 2001.
- ---, Renormalizing torus and annulus maps, in progress, 2001.
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas; Die Grundlehren der mathematischen Wissenschaften, Band 126. MR 0344463
- J. Llibre and R. S. MacKay, Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity, Ergodic Theory Dynam. Systems 11 (1991), no. 1, 115–128. MR 1101087, DOI https://doi.org/10.1017/S0143385700006040
- Ricardo Mañé, Ergodic theory and differentiable dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 8, Springer-Verlag, Berlin, 1987. Translated from the Portuguese by Silvio Levy. MR 889254
- Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. MR 1698616
- Michał Misiurewicz and Krystyna Ziemian, Rotation sets for maps of tori, J. London Math. Soc. (2) 40 (1989), no. 3, 490–506. MR 1053617, DOI https://doi.org/10.1112/jlms/s2-40.3.490
- Michał Misiurewicz and Krystyna Ziemian, Rotation sets and ergodic measures for torus homeomorphisms, Fund. Math. 137 (1991), no. 1, 45–52. MR 1100607, DOI https://doi.org/10.4064/fm-137-1-45-52
- Edwin E. Moise, Geometric topology in dimensions $2$ and $3$, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, Vol. 47. MR 0488059
- Edward E. Slaminka, A Brouwer translation theorem for free homeomorphisms, Trans. Amer. Math. Soc. 306 (1988), no. 1, 277–291. MR 927691, DOI https://doi.org/10.1090/S0002-9947-1988-0927691-X
- V. V. Veremenyuk, The existence of the rotation number of the equation $\dot x=\lambda (t,x)$ with a right-hand side that is periodic in $x$ and almost periodic in $t$, Differentsial′nye Uravneniya 27 (1991), no. 6, 1073–1076, 1102 (Russian). MR 1130294
Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 37E45, 37E30
Retrieve articles in all journals with MSC (1991): 37E45, 37E30
Additional Information
Jaroslaw Kwapisz
Affiliation:
Department of Mathematical Sciences, Montana State University, Bozeman, Montana 59717-2400
Email:
jarek@math.montana.edu
Received by editor(s):
January 10, 2001
Received by editor(s) in revised form:
August 31, 2001
Published electronically:
March 7, 2002
Additional Notes:
Partially supported by NSF grant DMS-9970725 and MONTS-190729.
Article copyright:
© Copyright 2002
Jaroslaw Kwapisz