Enright’s completions and injectively copresented modules
HTML articles powered by AMS MathViewer
- by Steffen König and Volodymyr Mazorchuk
- Trans. Amer. Math. Soc. 354 (2002), 2725-2743
- DOI: https://doi.org/10.1090/S0002-9947-02-02958-6
- Published electronically: March 11, 2002
- PDF | Request permission
Abstract:
Let $\mathfrak {A}$ be a finite-dimensional simple Lie algebra over the complex numbers. It is shown that a module is complete (or relatively complete) in the sense of Enright if and only if it is injectively copresented by certain injective modules in the BGG-category ${\mathcal O}$. Let $A$ be the finite-dimensional algebra associated to a block of ${\mathcal O}$. Then the corresponding block of the category of complete modules is equivalent to the category of $eAe$-modules for a suitable choice of the idempotent $e$. Using this equivalence, a very easy proof is given for Deodhar’s theorem (also proved by Bouaziz) that completion functors satisfy braid relations. The algebra $eAe$ is left properly and standardly stratified. It satisfies a double centralizer property similar to Soergel’s “combinatorial description” of ${\mathcal O}$. Its simple objects, their characters and their multiplicities in projective or standard objects are determined.References
- István Ágoston, Vlastimil Dlab, and Erzsébet Lukács, Stratified algebras, C. R. Math. Acad. Sci. Soc. R. Can. 20 (1998), no. 1, 22–28 (English, with French summary). MR 1619048
- Maurice Auslander, Representation theory of Artin algebras. I, II, Comm. Algebra 1 (1974), 177–268; ibid. 1 (1974), 269–310. MR 349747, DOI 10.1080/00927877408548230
- Ju Le Zhang, $p$-injectivity and Artinian semisimple rings, J. Math. Res. Exposition 11 (1991), no. 4, 579–585 (English, with Chinese summary). MR 1144962
- Maurice Auslander and Idun Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86 (1991), no. 1, 111–152. MR 1097029, DOI 10.1016/0001-8708(91)90037-8
- J. N. Bernstein and S. I. Gel′fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), no. 2, 245–285. MR 581584
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, A certain category of ${\mathfrak {g}}$-modules, Funkcional. Anal. i Priložen. 10 (1976), no. 2, 1–8 (Russian). MR 0407097
- A. Bouaziz, Sur les représentations des algèbres de Lie semi-simples construites par T. Enright, Noncommutative harmonic analysis and Lie groups (Marseille, 1980) Lecture Notes in Math., vol. 880, Springer, Berlin-New York, 1981, pp. 57–68 (French). MR 644827
- T.Brüstle, S.König and V.Mazorchuk, The coinvariant algebra and representation types of blocks of category ${\mathcal O}$. Bull. London Math. Soc. 33 (2001), 669-681.
- E. Cline, B. Parshall, and L. Scott, Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 85–99. MR 961165
- Edward Cline, Brian Parshall, and Leonard Scott, Stratifying endomorphism algebras, Mem. Amer. Math. Soc. 124 (1996), no. 591, viii+119. MR 1350891, DOI 10.1090/memo/0591
- Vinay V. Deodhar, On a construction of representations and a problem of Enright, Invent. Math. 57 (1980), no. 2, 101–118. MR 567193, DOI 10.1007/BF01390091
- Jacques Dixmier, Enveloping algebras, Graduate Studies in Mathematics, vol. 11, American Mathematical Society, Providence, RI, 1996. Revised reprint of the 1977 translation. MR 1393197, DOI 10.1090/gsm/011
- Vlastimil Dlab and Claus Michael Ringel, Every semiprimary ring is the endomorphism ring of a projective module over a quasihereditary ring, Proc. Amer. Math. Soc. 107 (1989), no. 1, 1–5. MR 943793, DOI 10.1090/S0002-9939-1989-0943793-2
- Thomas J. Enright, On the fundamental series of a real semisimple Lie algebra: their irreducibility, resolutions and multiplicity formulae, Ann. of Math. (2) 110 (1979), no. 1, 1–82. MR 541329, DOI 10.2307/1971244
- V.Futorny, S.König and V.Mazorchuk, Categories of induced modules and standardly stratified algebras. To appear in Algebras and Representation Theory.
- V. Futorny, S. König, and V. Mazorchuk, A combinatorial description of blocks in ${\scr O}({\scr P},\Lambda )$ associated with $\rm sl(2)$-induction, J. Algebra 231 (2000), no. 1, 86–103. MR 1779594, DOI 10.1006/jabr.2000.8356
- Vyacheslav Futorny, Steffen König, and Volodymyr Mazorchuk, $\scr S$-subcategories in $\scr O$, Manuscripta Math. 102 (2000), no. 4, 487–503. MR 1785327, DOI 10.1007/s002290070038
- Jens Carsten Jantzen, Einhüllende Algebren halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 3, Springer-Verlag, Berlin, 1983 (German). MR 721170, DOI 10.1007/978-3-642-68955-0
- A. Joseph, The Enright functor on the Bernstein-Gel′fand-Gel′fand category ${\cal O}$, Invent. Math. 67 (1982), no. 3, 423–445. MR 664114, DOI 10.1007/BF01398930
- M.Klucznik and V.Mazorchuk, Parabolic decomposition for properly stratified algebras. Preprint 99-083, Bielefeld University. To appear in J. Pure Appl. Algebra. Available via www at “http://www.elsevier.nl/locate/jpaa/”
- S.König and V.Mazorchuk, An equivalence of two categories of $sl(n,\mathbb {C})$-modules. To appear in Algebras and Representation Theory.
- S.König, I.H.Slungård and C.C.Xi, Double centralizer properties, dominant dimension and tilting modules. J. Algebra 240 (2001), 393-412.
- Olivier Mathieu, Classification of irreducible weight modules, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 2, 537–592 (English, with English and French summaries). MR 1775361
- Claus Michael Ringel, The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Z. 208 (1991), no. 2, 209–223. MR 1128706, DOI 10.1007/BF02571521
- Wolfgang Soergel, Kategorie $\scr O$, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc. 3 (1990), no. 2, 421–445 (German, with English summary). MR 1029692, DOI 10.1090/S0894-0347-1990-1029692-5
Bibliographic Information
- Steffen König
- Affiliation: Department of Mathematics and Computer Science, University of Leicester, University Road, Leicester, LE1 7RH, England
- MR Author ID: 263193
- Email: sck5@mcs.le.ac.uk
- Volodymyr Mazorchuk
- Affiliation: Department of Mathematics, Uppsala University, Box 480, SE-75106, Uppsala, Sweden
- MR Author ID: 353912
- Email: mazor@math.uu.se
- Received by editor(s): July 11, 2000
- Received by editor(s) in revised form: October 3, 2001
- Published electronically: March 11, 2002
- Additional Notes: The first author was partially supported by the EC TMR network “Algebraic Lie Representations” grant no ERB FMRX-CT97-0100.
The second author was an Alexander von Humboldt fellow at Bielefeld University. - © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 2725-2743
- MSC (2000): Primary 17B10, 16G10
- DOI: https://doi.org/10.1090/S0002-9947-02-02958-6
- MathSciNet review: 1895200