On the dimensional structure of hereditarily indecomposable continua
Authors:
Roman Pol and Mirosława Reńska
Journal:
Trans. Amer. Math. Soc. 354 (2002), 2921-2932
MSC (1991):
Primary 54F15, 54F45, 54H05
DOI:
https://doi.org/10.1090/S0002-9947-02-02959-8
Published electronically:
March 6, 2002
MathSciNet review:
1895209
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Any hereditarily indecomposable continuum $X$ of dimension $n\geq 2$ is split into layers $B_r$ consisting of all points in $X$ that belong to some $r$-dimensional continuum but avoid any non-trivial continuum of dimension less than $r$. The subjects of this paper are the dimensional and the descriptive properties of the layers $B_r$.
- P.S.Alexandroff, On some main directions in general topology, Uspekhi Mat. Nauk 19 (1964), 3-46 (in Russian).
- P.S.Alexandroff, Introduction to Homological Dimension Theory, “Nauka", Moscow, 1975 (in Russian).
- R.H.Bing, Higher-dimensional hereditarily indecomposable continua, Trans. Amer. Math. Soc. 71 (1951), 267-273.
- Vitalij A. Chatyrko and Elżbieta Pol, Continuum many Fréchet types of hereditarily strongly infinite-dimensional Cantor manifolds, Proc. Amer. Math. Soc. 128 (2000), no. 4, 1207–1213. MR 1636938, DOI https://doi.org/10.1090/S0002-9939-99-05089-3
- Ryszard Engelking, Theory of dimensions finite and infinite, Sigma Series in Pure Mathematics, vol. 10, Heldermann Verlag, Lemgo, 1995. MR 1363947
- W. Holsztyński, Universality of the product mappings onto products of $I^{n}$ and snake-like spaces, Fund. Math. 64 (1969), 147–155. MR 244936, DOI https://doi.org/10.4064/fm-64-2-147-155
- Zbigniew Karno, On a theorem of P. S. Aleksandrov, Colloq. Math. 72 (1997), no. 1, 39–51. MR 1425545, DOI https://doi.org/10.4064/cm-72-1-39-51
- B.Kaufmann, The dissection of closed sets of arbitrary dimension and the generalized Brouwer-Alexandroff theorem, Proc. Camb. Phil. Soc. 31 (1935), 525-535.
- B.Kaufmann, On infinitesimal properties of closed sets of arbitrary dimension, Annals of Math. 38 (1937), 14-35
- B.Kaufmann, Of the extension of the Pflastersatz, Proc. Camb. Phil. Soc. 32 (1936), 238-247.
- J.L.Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36.
- B.Knaster, Sur les coupures biconnexes des espaces euclidiens de dimension $n>1$ arbitraire, Matem. Sbornik 19 (1946), 9-18.
- J. Krasinkiewicz, Homotopy separators and mappings into cubes, Fund. Math. 131 (1988), no. 2, 149–154. MR 974664, DOI https://doi.org/10.4064/fm-131-2-149-154
- Józef Krasinkiewicz, On mappings with hereditarily indecomposable fibers, Bull. Polish Acad. Sci. Math. 44 (1996), no. 2, 147–156. MR 1416420
- Józef Krasinkiewicz, On approximation of mappings into $1$-manifolds, Bull. Polish Acad. Sci. Math. 44 (1996), no. 4, 431–440. MR 1420956
- K.Kuratowski, Topology, vol. I, Academic Press, New York, 1966, and vol. II, Academic Press, New York, 1968. ;
- Michael Levin, Bing maps and finite-dimensional maps, Fund. Math. 151 (1996), no. 1, 47–52. MR 1405520
- Michael Levin and Yaki Sternfeld, Hyperspaces of two-dimensional continua, Fund. Math. 150 (1996), no. 1, 17–24. MR 1387954
- Wayne Lewis, The pseudo-arc, Bol. Soc. Mat. Mexicana (3) 5 (1999), no. 1, 25–77. MR 1692467
- S.Mazurkiewicz, Sur les problemes $\kappa$ and $\lambda$ de Urysohn, Fund. Math. 10 (1926), 311-319.
- Jan van Mill and Roman Pol, On the existence of weakly $n$-dimensional spaces, Proc. Amer. Math. Soc. 113 (1991), no. 2, 581–585. MR 1056687, DOI https://doi.org/10.1090/S0002-9939-1991-1056687-0
- Kiiti Morita, Čech cohomology and covering dimension for topological spaces, Fund. Math. 87 (1975), 31–52. MR 362264, DOI https://doi.org/10.4064/fm-87-1-31-52
- E.Pol, M.Reńska, On Bing points in infinite-dimensional hereditarily indecomposable continua, Topology and Appl. (to appear).
- Roman Pol, Countable-dimensional universal sets, Trans. Amer. Math. Soc. 297 (1986), no. 1, 255–268. MR 849478, DOI https://doi.org/10.1090/S0002-9947-1986-0849478-7
- Roman Pol, An $n$-dimensional compactum which remains $n$-dimensional after removing all Cantor $n$-manifolds, Fund. Math. 136 (1990), no. 2, 127–131. MR 1074658, DOI https://doi.org/10.4064/fm-136-2-127-131
- James T. Rogers Jr., Orbits of higher-dimensional hereditarily indecomposable continua, Proc. Amer. Math. Soc. 95 (1985), no. 3, 483–486. MR 806092, DOI https://doi.org/10.1090/S0002-9939-1985-0806092-1
- Leonard R. Rubin, R. M. Schori, and John J. Walsh, New dimension-theory techniques for constructing infinite-dimensional examples, General Topology Appl. 10 (1979), no. 1, 93–102. MR 519716, DOI https://doi.org/10.1016/0016-660x%2879%2990031-x
- Yaki Sternfeld, On finite-dimensional maps and other maps with “small” fibers, Fund. Math. 147 (1995), no. 2, 127–133. MR 1341726
Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 54F15, 54F45, 54H05
Retrieve articles in all journals with MSC (1991): 54F15, 54F45, 54H05
Additional Information
Roman Pol
Affiliation:
Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
Email:
pol@mimuw.edu.pl
Mirosława Reńska
Affiliation:
Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
Email:
mrenska@mimuw.edu.pl
Keywords:
Hereditarily indecomposable continua,
dimension,
Borel sets
Received by editor(s):
September 5, 2000
Received by editor(s) in revised form:
October 5, 2001
Published electronically:
March 6, 2002
Additional Notes:
Research partially supported by KBN grant 5 P03A 024 20
Article copyright:
© Copyright 2002
American Mathematical Society