## A non-fixed point theorem for Hamiltonian lie group actions

HTML articles powered by AMS MathViewer

- by Christopher Allday, Volker Hauschild and Volker Puppe PDF
- Trans. Amer. Math. Soc.
**354**(2002), 2971-2982 Request permission

## Abstract:

We prove that, under certain conditions, if a compact connected Lie group acts effectively on a closed manifold, then there is no fixed point. Because two of the main conditions are satisfied by any Hamiltonian action on a closed symplectic manifold, the theorem applies nicely to such actions. The method of proof, however, is cohomological; and so the result applies more generally.## References

- John Oprea and Aleksy Tralle (eds.),
*Homotopy and geometry*, Banach Center Publications, vol. 45, Polish Academy of Sciences, Institute of Mathematics, Warsaw, 1998. Papers from the workshop held in Warsaw, June 9–13, 1997. MR**1683657** - C. Allday,
*Notes on the Localization Theorem with applications to symplectic torus actions*, Proceedings of the Winter School on Transformation Groups, Indian Statistical Institute, Calcutta 1998, to appear. - C. Allday and V. Puppe,
*Cohomological methods in transformation groups*, Cambridge Studies in Advanced Mathematics, vol. 32, Cambridge University Press, Cambridge, 1993. MR**1236839**, DOI 10.1017/CBO9780511526275 - M. F. Atiyah and R. Bott,
*The moment map and equivariant cohomology*, Topology**23**(1984), no. 1, 1–28. MR**721448**, DOI 10.1016/0040-9383(84)90021-1 - Michèle Audin,
*The topology of torus actions on symplectic manifolds*, Progress in Mathematics, vol. 93, Birkhäuser Verlag, Basel, 1991. Translated from the French by the author. MR**1106194**, DOI 10.1007/978-3-0348-7221-8 - Saunders MacLane and O. F. G. Schilling,
*Infinite number fields with Noether ideal theories*, Amer. J. Math.**61**(1939), 771–782. MR**19**, DOI 10.2307/2371335 - Armand Borel,
*Seminar on transformation groups*, Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. MR**0116341** - Glen E. Bredon,
*Fixed point sets of actions on Poincaré duality spaces*, Topology**12**(1973), 159–175. MR**331375**, DOI 10.1016/0040-9383(73)90004-9 - Glen E. Bredon,
*Sheaf theory*, 2nd ed., Graduate Texts in Mathematics, vol. 170, Springer-Verlag, New York, 1997. MR**1481706**, DOI 10.1007/978-1-4612-0647-7 - Glen E. Bredon,
*Introduction to compact transformation groups*, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR**0413144** - Theodore Chang,
*On the number of relations in the cohomology of a fixed point set*, Manuscripta Math.**18**(1976), no. 3, 237–247. MR**426005**, DOI 10.1007/BF01245918 - Theodore Chang and Tor Skjelbred,
*Group actions on Poincaré duality spaces*, Bull. Amer. Math. Soc.**78**(1972), 1024–1026. MR**307226**, DOI 10.1090/S0002-9904-1972-13092-1 - Theodore Chang and Tor Skjelbred,
*Lie group actions on a Cayley projective plane and a note on homogeneous spaces of prime Euler characteristic*, Amer. J. Math.**98**(1976), no. 3, 655–678. MR**428347**, DOI 10.2307/2373811 - Theodore Frankel,
*Fixed points and torsion on Kähler manifolds*, Ann. of Math. (2)**70**(1959), 1–8. MR**131883**, DOI 10.2307/1969889 - Victor W. Guillemin and Shlomo Sternberg,
*Supersymmetry and equivariant de Rham theory*, Mathematics Past and Present, Springer-Verlag, Berlin, 1999. With an appendix containing two reprints by Henri Cartan [ MR0042426 (13,107e); MR0042427 (13,107f)]. MR**1689252**, DOI 10.1007/978-3-662-03992-2 - V. Hauschild,
*Transformation groups on complex Grassmannians*, to appear. - Wu-yi Hsiang,
*Cohomology theory of topological transformation groups*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 85, Springer-Verlag, New York-Heidelberg, 1975. MR**0423384** - Gregory Lupton and John Oprea,
*Cohomologically symplectic spaces: toral actions and the Gottlieb group*, Trans. Amer. Math. Soc.**347**(1995), no. 1, 261–288. MR**1282893**, DOI 10.1090/S0002-9947-1995-1282893-4 - L. N. Mann,
*Finite orbit structure on locally compact manifolds*, Michigan Math. J.**9**(1962), 87–92. MR**132119** - Daniel Quillen,
*The spectrum of an equivariant cohomology ring. I, II*, Ann. of Math. (2)**94**(1971), 549–572; ibid. (2) 94 (1971), 573–602. MR**298694**, DOI 10.2307/1970770 - Aleksy Tralle and John Oprea,
*Symplectic manifolds with no Kähler structure*, Lecture Notes in Mathematics, vol. 1661, Springer-Verlag, Berlin, 1997. MR**1465676**, DOI 10.1007/BFb0092608 - A. Tralle and J. Oprea,
*Symplectic Manifolds with no Kähler Structure*, Lecture Notes in Math. 1661, Springer-Verlag, Berlin, Heidelberg, New York, 1997.

## Additional Information

**Christopher Allday**- Affiliation: Department of Mathematics, University of Hawaii at Manoa, Honolulu, Hawaii 96822-2273
- Email: chris@math.hawaii.edu
**Volker Hauschild**- Affiliation: Department of Mathematics, University of Calabria, I-87036 Rende, Italy
- Email: hausch@unical.it
**Volker Puppe**- Affiliation: Faculty of Mathematics, University of Konstanz, D-78457 Konstanz, Germany
- Email: volker.puppe@uni-konstanz.de
- Received by editor(s): November 4, 2001
- Published electronically: March 5, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**354**(2002), 2971-2982 - MSC (2000): Primary 57S15; Secondary 53D99, 55N91, 57R17
- DOI: https://doi.org/10.1090/S0002-9947-02-02968-9
- MathSciNet review: 1895212