## Applications of Langlands’ functorial lift of odd orthogonal groups

HTML articles powered by AMS MathViewer

- by Henry H. Kim
- Trans. Amer. Math. Soc.
**354**(2002), 2775-2796 - DOI: https://doi.org/10.1090/S0002-9947-02-02969-0
- Published electronically: March 6, 2002
- PDF | Request permission

## Abstract:

Together with Cogdell, Piatetski-Shapiro and Shahidi, we proved earlier the existence of a weak functorial lift of a generic cuspidal representation of $SO_{2n+1}$ to $GL_{2n}$. Recently, Ginzburg, Rallis and Soudry obtained a more precise form of the lift using their integral representation technique, namely, the lift is an isobaric sum of cuspidal representations of $GL_{n_i}$ (more precisely, cuspidal representations of $GL_{2n_i}$ such that the exterior square $L$-functions have a pole at $s=1$). One purpose of this paper is to give a simpler proof of this fact in the case that a cuspidal representation has one supercuspidal component. In a separate paper, we prove it without any condition using a result on spherical unitary dual due to Barbasch and Moy. We give several applications of the functorial lift: First, we parametrize square integrable representations with generic supercuspidal support, which have been classified by Moeglin and Tadic. Second, we give a criterion for cuspidal reducibility of supercuspidal representations of $GL_m\times SO_{2n+1}$. Third, we obtain a functorial lift from generic cuspidal representations of $SO_5$ to automorphic representations of $GL_5$, corresponding to the $L$-group homomorphism $Sp_4(\mathbb {C})\longrightarrow GL_5(\mathbb {C})$, given by the second fundamental weight.## References

- Dan Barbasch and Allen Moy,
*Unitary spherical spectrum for $p$-adic classical groups*, Acta Appl. Math.**44**(1996), no. 1-2, 3–37. Representations of Lie groups, Lie algebras and their quantum analogues. MR**1407038**, DOI 10.1007/BF00116514 - I. M. Sheffer,
*Some properties of polynomial sets of type zero*, Duke Math. J.**5**(1939), 590–622. MR**81** - William Casselman and Freydoon Shahidi,
*On irreducibility of standard modules for generic representations*, Ann. Sci. École Norm. Sup. (4)**31**(1998), no. 4, 561–589 (English, with English and French summaries). MR**1634020**, DOI 10.1016/S0012-9593(98)80107-9 - J. Cogdell, H. Kim, I.I. Piatetski-Shapiro, and F. Shahidi,
*On lifting from classical groups to $GL_{N}$*, Publ. Math. IHES**93**(2001), 5–30. - J. W. Cogdell and I. I. Piatetski-Shapiro,
*Converse theorems for $\textrm {GL}_n$*, Inst. Hautes Études Sci. Publ. Math.**79**(1994), 157–214. MR**1307299** - David Ginzburg, Stephen Rallis, and David Soudry,
*Self-dual automorphic $\textrm {GL}_n$ modules and construction of a backward lifting from $\textrm {GL}_n$ to classical groups*, Internat. Math. Res. Notices**14**(1997), 687–701. MR**1460389**, DOI 10.1155/S1073792897000457 - David Goldberg,
*$R$-groups and elliptic representations for similitude groups*, Math. Ann.**307**(1997), no. 4, 569–588. MR**1464132**, DOI 10.1007/s002080050051 - M. Harris and R. Taylor,
*On the geometry and cohomology of some simple Shimura varieties*, preprint, 1998. - Guy Henniart,
*Une preuve simple des conjectures de Langlands pour $\textrm {GL}(n)$ sur un corps $p$-adique*, Invent. Math.**139**(2000), no. 2, 439–455 (French, with English summary). MR**1738446**, DOI 10.1007/s002220050012 - H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika,
*Rankin-Selberg convolutions*, Amer. J. Math.**105**(1983), no. 2, 367–464. MR**701565**, DOI 10.2307/2374264 - H. Jacquet and J. A. Shalika,
*On Euler products and the classification of automorphic representations. I*, Amer. J. Math.**103**(1981), no. 3, 499–558. MR**618323**, DOI 10.2307/2374103 - Chris Jantzen,
*On supports of induced representations for symplectic and odd-orthogonal groups*, Amer. J. Math.**119**(1997), no. 6, 1213–1262. MR**1481814** - Chris Jantzen,
*On square-integrable representations of classical $p$-adic groups*, Canad. J. Math.**52**(2000), no. 3, 539–581. MR**1758232**, DOI 10.4153/CJM-2000-025-7 - Henry H. Kim,
*Langlands-Shahidi method and poles of automorphic $L$-functions: application to exterior square $L$-functions*, Canad. J. Math.**51**(1999), no. 4, 835–849. MR**1701344**, DOI 10.4153/CJM-1999-036-0 - Henry H. Kim,
*Langlands-Shahidi method and poles of automorphic $L$-functions. II*, Israel J. Math.**117**(2000), 261–284. MR**1760595**, DOI 10.1007/BF02773573 - Henry H. Kim,
*Langlands-Shahidi method and poles of automorphic $L$-functions. II*, Israel J. Math.**117**(2000), 261–284. MR**1760595**, DOI 10.1007/BF02773573 - —,
*Functoriality for exterior square of $GL_{4}$ and symmetric fourth of $GL_{2}$*, submitted. - —,
*Residual spectrum of split classical groups; contribution from Borel subgroups*, Pacific J. Math.**199**(2001), 417-445. - —,
*Residual spectrum of odd-orthogonal groups*, IMRN**17**(2001), 873–906. - —,
*On local $L$-functions and normalized intertwining operators*, preprint. - Stephen S. Kudla,
*The local Langlands correspondence: the non-Archimedean case*, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 365–391. MR**1265559**, DOI 10.1090/pspum/055.2/1265559 - R. P. Langlands,
*Problems in the theory of automorphic forms*, Lectures in Modern Analysis and Applications, III, Lecture Notes in Mathematics, Vol. 170, Springer, Berlin, 1970, pp. 18–61. MR**0302614** - R. P. Langlands,
*On the classification of irreducible representations of real algebraic groups*, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101–170. MR**1011897**, DOI 10.1090/surv/031/03 - A. Borel and H. Jacquet,
*Automorphic forms and automorphic representations*, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 189–207. With a supplement “On the notion of an automorphic representation” by R. P. Langlands. MR**546598** - Jian-Shu Li,
*Some results on the unramified principal series of $p$-adic groups*, Math. Ann.**292**(1992), no. 4, 747–761. MR**1157324**, DOI 10.1007/BF01444646 - Colette Mœglin,
*Représentations unipotentes et formes automorphes de carré intégrable*, Forum Math.**6**(1994), no. 6, 651–744 (French, with English summary). MR**1300285**, DOI 10.1515/form.1994.6.651 - C. Mœglin,
*Orbites unipotentes et spectre discret non ramifié: le cas des groupes classiques déployés*, Compositio Math.**77**(1991), no. 1, 1–54 (French). MR**1091891** - —,
*Une conjecture sur le spectre résiduel des groupes classiques*, preprint, 1994. - C. Mœglin and J.-L. Waldspurger,
*Spectral decomposition and Eisenstein series*, Cambridge Tracts in Mathematics, vol. 113, Cambridge University Press, Cambridge, 1995. Une paraphrase de l’Écriture [A paraphrase of Scripture]. MR**1361168**, DOI 10.1017/CBO9780511470905 - C. Mœglin and J.-L. Waldspurger,
*Le spectre résiduel de $\textrm {GL}(n)$*, Ann. Sci. École Norm. Sup. (4)**22**(1989), no. 4, 605–674 (French). MR**1026752** - C. Moeglin and M. Tadic,
*Construction of discrete series for classical $p$-adic groups*, preprint. - Goran Muić,
*Some results on square integrable representations; irreducibility of standard representations*, Internat. Math. Res. Notices**14**(1998), 705–726. MR**1637097**, DOI 10.1155/S1073792898000427 - Dipendra Prasad and Dinakar Ramakrishnan,
*On the global root numbers of $\textrm {GL}(n)\times \textrm {GL}(m)$*, Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996) Proc. Sympos. Pure Math., vol. 66, Amer. Math. Soc., Providence, RI, 1999, pp. 311–330. MR**1703765**, DOI 10.1090/pspum/066.2/1703765 - Dinakar Ramakrishnan,
*Modularity of the Rankin-Selberg $L$-series, and multiplicity one for $\textrm {SL}(2)$*, Ann. of Math. (2)**152**(2000), no. 1, 45–111. MR**1792292**, DOI 10.2307/2661379 - Jonathan D. Rogawski,
*Representations of $\textrm {GL}(n)$ and division algebras over a $p$-adic field*, Duke Math. J.**50**(1983), no. 1, 161–196. MR**700135** - Freydoon Shahidi,
*A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups*, Ann. of Math. (2)**132**(1990), no. 2, 273–330. MR**1070599**, DOI 10.2307/1971524 - Franz Rádl,
*Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen*, Math. Z.**45**(1939), 429–446 (German). MR**82**, DOI 10.1007/BF01580293 - Freydoon Shahidi,
*On the Ramanujan conjecture and finiteness of poles for certain $L$-functions*, Ann. of Math. (2)**127**(1988), no. 3, 547–584. MR**942520**, DOI 10.2307/2007005 - Freydoon Shahidi,
*Twisted endoscopy and reducibility of induced representations for $p$-adic groups*, Duke Math. J.**66**(1992), no. 1, 1–41. MR**1159430**, DOI 10.1215/S0012-7094-92-06601-4 - Freydoon Shahidi,
*On multiplicativity of local factors*, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 3, Weizmann, Jerusalem, 1990, pp. 279–289. MR**1159120** - Freydoon Shahidi,
*Local coefficients as Artin factors for real groups*, Duke Math. J.**52**(1985), no. 4, 973–1007. MR**816396**, DOI 10.1215/S0012-7094-85-05252-4 - Marko Tadić,
*Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case)*, Ann. Sci. École Norm. Sup. (4)**19**(1986), no. 3, 335–382. MR**870688** - Hiroyuki Yoshida,
*On the unitarizability of principal series representations of $\mathfrak {p}$-adic Chevalley groups*, J. Math. Kyoto Univ.**32**(1992), no. 1, 155–233. MR**1145650**, DOI 10.1215/kjm/1250519602 - A. V. Zelevinsky,
*Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$*, Ann. Sci. École Norm. Sup. (4)**13**(1980), no. 2, 165–210. MR**584084**

## Bibliographic Information

**Henry H. Kim**- Affiliation: Department of Mathematics, University of Toronto, Toronto, ON M5S 3G3, Canada
- MR Author ID: 324906
- Email: henrykim@math.toronto.edu
- Received by editor(s): September 25, 2000
- Received by editor(s) in revised form: February 21, 2001, and September 27, 2001
- Published electronically: March 6, 2002
- Additional Notes: Partially supported by NSF grant DMS9988672, NSF grant DMS9729992 (at IAS) and by Clay Mathematics Institute.
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**354**(2002), 2775-2796 - MSC (2000): Primary 22E55, 11F70
- DOI: https://doi.org/10.1090/S0002-9947-02-02969-0
- MathSciNet review: 1895203