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VERTICES FOR CHARACTERS OF p-SOLVABLE GROUPS

GABRIEL NAVARRO

Abstract. Suppose that G is a finite p-solvable group. We associate to every
irreducible complex character χ ∈ Irr(G) of G a canonical pair (Q, δ), where
Q is a p-subgroup of G and δ ∈ Irr(Q), uniquely determined by χ up to G-
conjugacy. This pair behaves as a Green vertex and partitions Irr(G) into
“families” of characters. Using the pair (Q, δ), we give a canonical choice of a
certain p-radical subgroup R of G and a character η ∈ Irr(R) associated to χ
which was predicted by some conjecture of G. R. Robinson.

1. Introduction

Let p be a prime and let G be a finite p-solvable group. In this paper, we
associate to every ordinary irreducible character χ ∈ Irr(G) a canonical pair (Q, δ),
where Q is a p-subgroup of G and δ ∈ Irr(Q), which is uniquely determined by χ
up to G-conjugacy. We say that (Q, δ) is a vertex of χ, and we denote by

Irr(G|Q, δ)
the set of all χ ∈ Irr(G) with vertex (Q, δ). (See Section 3 for this construction.)

If G is a finite group and S is a certain complete discrete valuation ring or a
field of characteristic p, we know by work of J. A. Green that each indecompos-
able SG-module V has an associated G-conjugacy class of p-subgroups Q of G
called the vertices of V . Given an irreducible character χ ∈ Irr(G), it is possible
to find a (necessarily indecomposable) SG-module V affording χ, and therefore we
might associate to χ a set of vertices in the Green sense. As is well-known, how-
ever, χ does not uniquely determine V , and different SG-modules affording χ can
have non-isomorphic vertices. (Of course, this is not the case with the irreducible
Brauer characters of G. Given ϕ ∈ IBr(G), we have that ϕ uniquely determines
up to isomorphism a simple FG-module V , where F is an algebraically closed field
of characteristic p, and therefore, irreducible Brauer characters do have vertices
associated. If Q is a p-subgroup of G, we denote by IBr(G|Q) the set of irreducible
Brauer characters of G with vertex Q.)

The pairs (Q, δ) that we associate to the irreducible character of the p-solvable
groups behave, in certain aspects, as the Green vertices. In order to state their
main properties, we remind the reader of some definitions and notation. First of
all, the defect d(χ) of any character χ ∈ Irr(G) is defined by the equation

pd(χ)χ(1)p = |G|p .
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Recall that a p-subgroup Q of G is p-radical (in G) if Q = Op(NG(Q)). Also, every
p-subgroup Q of G is contained in a p-radical subgroup of G uniquely determined
by Q and G. This is called the radical closure of Q in G and is the last term R
of the chain Pi+1 = Op(NG(Pi)) starting with Q = P0. If Q is a p-subgroup of G
and δ ∈ Irr(Q), we denote by NG(Q, δ) the elements of NG(Q) which stabilize δ.

Theorem A. Let Q be a p-subgroup of a p-solvable group G and let δ ∈ Irr(Q).
(a) Suppose that δ = 1Q is the principal character of Q. Then restriction to

p-regular elements defines a canonical bijection

Irr(G|Q, δ)→ IBr(G|Q) .

(b) If χ ∈ Irr(G) has vertex (Q, δ), then d(χ) = d(δ).
(c) If χ ∈ Irr(G) has vertex (Q, δ), then χ(g) = 0 whenever the p-part of g lies

in no G-conjugate of Q.
(d) If χ ∈ Irr(G) has vertex (Q, δ), then

Op(NG(Q, δ)) = Q .

(e) Suppose that (Q, δ) is a vertex of χ ∈ Irr(G). Let R be the radical closure of
Q in G. Then there is a defect group D of the p-block of χ such that Q ⊆ R ⊆ D
and

CD(Q) = Z(Q) .

(f) Suppose that (Q, δ) is a vertex of χ ∈ Irr(G), and let R be the radical closure
of Q in G. Then the induced character η = δR is irreducible.

(g) Suppose that Q / G and that δ is G-invariant. Then χ ∈ Irr(G) has vertex
(Q, δ) if and only if the restriction χQ contains δ and

(χ(1)/δ(1))p = |G : Q|p .

In the special case where δ = 1Q, Theorem A recovers several well-known results
on the irreducible Brauer characters of the p-solvable groups. Of course, Theorem
A(a) gives a strong form of the Fong-Swan theorem that irreducible Brauer char-
acters of p-solvable groups are liftable, or Theorem A(d) reproves that the vertices
of the Brauer characters are p-radical (in p-solvable groups). Concerning part (e),
the fact that vertices are “big” (that is, containing its own centralizer) in the defect
groups is a celebrated general result of R. Knörr ([7]), although the part on the
radical closure seems not have been noticed up to now.

When introducing a “new” object it is always pleasant to find applications, and
we do have one for our pairs (Q, δ). A consequence drawn by G. R. Robinson of
the well-known conjectures on representation theory of groups by E. C. Dade and
himself is that, given χ ∈ Irr(G), there always can be found a radical p-subgroup
R of G which is “big” in a defect group of the p-block of χ, and which has an
irreducible character η ∈ Irr(R) with d(χ) = d(η). For p-solvable groups this is now
a fact (see Theorem 2 of [11], or [1] for a partial result). Our Theorem A, parts
(e) and (f), gives a canonical choice for Robinson’s predicted R and η: if (Q, δ) is
a vertex of χ, it suffices to take R the radical closure of Q in G and η = δR.

Our aim when introducing the vertices (Q, δ) for the irreducible characters of the
p-solvable groups was to explore the relationship between the characters of G and
the characters of certain local subgroups of G. In fact, our main concern is to find
any connection between the sets Irr(G|Q, δ) and Irr(NG(Q, δ)|Q, δ). For instance,
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by Theorem A(g), notice that when δ = 1Q, the set Irr(NG(Q, δ)|Q, δ) consists of
the Alperin weights. Hence, for δ = 1Q, we have that

|Irr(G|Q, δ)| = |Irr(NG(Q, δ)|Q, δ)|
(by Theorem A, (a) and (g), and the main result in [5]). This proves, of course, the
Alperin weight conjecture for p-solvable groups.

Suppose now that χ ∈ Irr(G) and let (Q, δ) be a vertex of χ. By Theorem A(b), it
is easy to check that a character χ ∈ Irr(G) has p′-degree if and only if Q is a Sylow
p-subgroup of G and δ is linear. If this is the case, notice that Irr(NG(Q, δ)|Q, δ)
consists exactly of those characters of NG(Q, δ) lying over δ (by Theorem A(g)).
Hence, by the Clifford correspondence, we have that |Irr(NG(Q, δ)|Q, δ)| is the
number of irreducible characters of NG(Q) lying over δ. By using the main result
of [6] it is possible to prove that whenever Q ∈ Sylp(G) and δ ∈ Irr(Q) is linear,
again we have

|Irr(G|Q, δ)| = |Irr(NG(Q, δ)|Q, δ)| ,
proving a strong form of the McKay conjecture.

Our construction of the vertex pair (Q, δ) for χ ∈ Irr(G) heavily uses the p-
solvability of G. We do not know if it is possible to associate a similar canonical
pair (Q, δ) to every irreducible character χ of every finite group G.

In order to prove some of the previous results, it is essential to establish the
following property of the radical closure (which we find interesting on its own).

Theorem B. Suppose that G is p-solvable and let N / G. Suppose that θ ∈ IBr(N)
has p′-degree. Let Q be any p-subgroup of G containing a Sylow p-subgroup of N ,
and let R be its radical closure in G. If θ is Q-invariant, then θ is R-invariant.

I would like to thank M. Isaacs for many useful conversations on this subject.

2. Inducing characters

In this section, instead of restricting ourselves to a single prime p, we work with
a set of primes π with the same amount of work. Our goal now is to associate to
every irreducible χ ∈ Irr(G) of a π-separable group G a unique (up to G-conjugacy)
pair (W,γ), where W ⊆ G and γ ∈ Irr(W ), satisfying certain properties. We will
obtain (W,γ) by repeated Clifford induction from the “right” normal subgroups.
We remind the reader that a group G is π-separable if it has a normal series 1 =
Gk < · · · < G0 = G such that the factors Gi/Gi+1 are either π- or π′-groups. Of
course, the p-solvable groups are the p-separable groups. Also, π-separable groups
have Hall π-subgroups, and any two of them are G-conjugate.

To find the pairs (W,γ), we use π-special characters, and next we remind the
reader of their definition and main properties. If G is π-separable, an irreducible
χ ∈ Irr(G) is said to be π-special if χ(1) is a π-number and for every subnormal
subgroup N / /G and θ ∈ Irr(N) under χ, the determinantal order of θ is a π-
number. (Recall that the determinantal order of θ is the order of the linear character
detX , where X is any representation affording θ.) Of course, if G is a π-group,
then all irreducible characters of G are π-special. Also, by the definition, normal
irreducible constituents of π-special characters are again π-special.

Let us write down for the reader’s convenience the properties of the π-special
characters that we are going to use later on. If p is a prime and χ ∈ Irr(G), we
denote by χ0 the restriction of χ to the set G0 of p-regular elements of G.
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(2.1) Theorem. Suppose that G is π-separable, let H be a Hall π-subgroup of G,
and let Xπ(G) be the set of irreducible π-special characters of G.

(a) If N / G is a π′-group and χ ∈ Xπ(G), then N ⊆ ker(χ).
(b) If G/M is a π′-group, then restriction defines a bijection between Xπ(G) and

the set of π-special G-invariant characters of M .
(c) If J ⊆ G has π′-index, then restriction defines a one-to-one map between

Xπ(G) and Xπ(J).
(d) If K is a π-complement of G, then

|Xπ(G)| = |Irr(NG(K)/K)| .
(e) If G is p-solvable and IBrp′(G) is the set of irreducible p-Brauer characters

of G of p′-degree, then restriction to p-regular elements defines a bijection

Xp′(G)→ IBrp′(G) .

(f) Suppose that G is p-solvable and let N / G. Suppose that χ ∈ Irr(G) and
θ ∈ Irr(N) are p′-specials. Then χ0 ∈ IBr(G) lies over θ0 ∈ IBr(N) iff χ lies over
θ.

Proof. Part (a) follows from Corollary (4.2) of [2]. Part (b) is Proposition (4.3)
of [2]. Part (c) follows from Proposition (6.1) of [2]. Part (d) is deeper and can
be found as Corollary (1.16) of [12]. Part (e) easily follows from Lemma (5.4) and
Corollary (10.3) of [3]. Now, we prove part (f). If θ lies over χ, it is clear that χ0

lies under θ0. Conversely, suppose that χ0 lies over θ0. Let H be a p-complement
of G. Then H ⊆ G0, and we have that χH ∈ Irr(H) lies over θH∩N ∈ Irr(N ∩H).
Therefore, some irreducible constituent η of χN must lie over θN∩H . However, η
is p′-special. By part (c), we have that ηN∩H = θN∩H , and therefore η = θ, as
desired.

Another remarkable property of special characters is that if α ∈ Irr(G) is π-
special and β ∈ Irr(G) is π′-special, then αβ ∈ Irr(G) (Proposition (7.1) of [2]). In
fact, this factorization is unique. The irreducible characters of G of the form αβ
are called π-factorable. Sometimes if χ ∈ Irr(G) is π-factorable, we write

χ = χπχπ′ ,

where χπ is π-special and χπ′ is π′-special. Since normal irreducible constituents
of π-specials are π-special, the same happens with π-factorable characters.

(2.2) Theorem. Suppose that G is π-separable, and let N,M/G. If the irreducible
constituents of χN and of χM are π-factorable, then the irreducible constituents of
χNM are also π-factorable.

Proof. We argue by induction, first on |G|, and then on |G : N |+ |G : M |. If δ is
an irreducible constituent of χNM , we have that the irreducible constituents of δM
and of δN are π-factorable. So by induction, we may assume that G = NM , and
we should prove that χ is π-factorable. Now suppose that N ⊆ K / G is a proper
normal subgroup of G, and let ε lie under χ. Then the irreducible constituents of
εN are irreducible constituents of χN , and therefore they are π-factorable. On the
other hand, the irreducible constituents of εK∩M lie under irreducible constituents
of χM , and therefore, they are also π-factorable. Arguing by induction, we obtain
that ε is π-factorable, and again by induction, that χ is π-factorable. So we may
assume that N and M are maximal normal subgroups of G. Hence, each G/N
and G/M is a π-group or a π′-group. Now, let θ ∈ Irr(N) be under χ, and let
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η ∈ Irr(N ∩ M) be under θ. Hence η lies under χ, and therefore there is some
ϕ ∈ Irr(M) over η and under χ. The theorem now follows from Corollary (2.8) of
[3].

A pair (G,χ) is just a group G with an irreducible character χ ∈ Irr(G). Also,
if H ⊆ G, α ∈ Irr(H) and g ∈ G, then (H,α)g = (Hg, αg), where αg ∈ Irr(Hg) is
the character satisfying

αg(hg) = α(h)

for h ∈ H .

(2.3) Corollary. Suppose that G is π-separable and let χ ∈ Irr(G). Then there
is, up to G-conjugacy, a unique pair (N, θ) which is maximal subject to N being a
normal subgroup of G and θ being a π-factorable irreducible character of N lying
under χ.

Proof. If (M,ϕ) is another π-factorable maximal pair under (G,χ), then the irre-
ducible constituents of χNM are π-factorable by Theorem (2.2). By maximality, we
have that N = M and therefore, by Clifford’s theorem, (N, θ)g = (M,ϕ).

(2.4) Corollary. Suppose that G is π-separable, and let χ ∈ Irr(G). Let (N, θ) be
a maximal normal π-factorable pair under χ. If θ is G-invariant, then G = N and
χ = θ.

Proof. Suppose that N is proper in G. Let M/N be a chief factor of G. Also, let
η ∈ Irr(M) lie under χ and over θ. Now, by the uniqueness of the decomposition
of a character as a π-special times a π′-special, it follows that the π-part and the
π′-part of θ are G-invariant. Since M/N is a π-group or a π′-group, it follows by
Proposition (2.7) of [3] that η is π-factorable. This contradicts the maximality of
(N, θ).

Given a π-separable group G and χ ∈ Irr(G), we define a canonical (up to G-
conjugacy) pair (W,γ) satisfying W ⊆ G, γ ∈ Irr(W ) is π-factorable, and γG = χ.
We do this inductively on |G|. If χ is π-factorable, then we let (W,γ) = (G,χ). If
χ is not π-factorable, then let (N, θ) be a maximal π-factorable normal pair under
χ. Let T = IG(θ) be the stabilizer of θ in G and let ψ ∈ Irr(T |θ) be the Clifford
correspondent of χ over θ. By Corollary (2.4), we have that T is proper in G. Then,
by induction, we have defined a pair (W,γ) for (T, ψ). We call every G-conjugate of
every pair (W,γ) arising this way a nucleus via normal pairs for χ. By definition
and Theorem (2.3), notice that if (W,γ) and (U, η) are nuclei for χ, then there is
g ∈ G such that

(W,γ)g = (U, η) .

(The analogous construction of the nucleus of a character via subnormal pairs is
done in [3]. Our normal construction is, however, essential for our purposes here.)
Since there will be no other nuclei in this paper, we will simply refer to (W,γ) as a
nucleus for χ.

3. Vertices for characters

Suppose now that G is p-solvable, and let χ ∈ Irr(G). Let Q be a p-subgroup
of G and let δ ∈ Irr(Q). We say that (Q, δ) is a vertex of χ if there is a nucleus
(W,γ) for χ such that Q ∈ Sylp(W ) and βQ = δ, where β = γp is the p-part of γ.
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Suppose now that (E, η) is another vertex of χ. We claim that there is x ∈ G
such that

(Q, δ)x = (E, η) .

We know that there is a g ∈ G such that E is a Sylow p-subgroup of W g and
η = ((γg)p)E . Now, Qg is a Sylow p-subgroup of W g, and therefore Qg = Ew

g

for
some w ∈ W . Hence Qw

−1g = E. Also,

δw
−1g = ((γp)Q)w

−1g = ((γp)w
−1g)Qw−1g

= ((γp)w
−1g)E = ((γp)g)E = ((γg)p)E = η ,

as desired.
We denote by Irr(G|Q, δ) the set of irreducible characters χ with vertex (Q, δ).
The following easily follows from the definition of the defect of a character.

(3.1) Lemma. Suppose that ψG = χ ∈ Irr(G). Then d(ψ) = d(χ).

Proof. Suppose that ψ ∈ Irr(H). Then

pd(χ) = |G|p/χ(1)p = |G|p/|G : H |pψ(1)p = |H |p/ψ(1)p = pd(ψ) ,

as desired.

Next is Theorem A(b).

(3.2) Theorem. Let G be p-solvable and suppose that χ ∈ Irr(G) has vertex (Q, δ).
Then d(χ) = d(δ).

Proof. Let (W,γ) be a nucleus for χ such that Q ∈ Sylp(W ) and (γp)Q = δ. Hence
by Lemma (3.1) we have

pd(χ) = pd(γ) = pd(γp) = |W |p/γp(1) = |Q|/δ(1) = pd(δ) ,

as desired.

Next is Theorem A(c).

(3.3) Theorem. Let G be p-solvable and suppose that χ ∈ Irr(G) has vertex (Q, δ).
Let g ∈ G. If no G-conjugate of gp lies in Q, then χ(g) = 0.

Proof. Let (W,γ) be a nucleus for χ such that Q ∈ Sylp(W ) and (γp)Q = δ. By
hypothesis, no G-conjugate of g lies in W . Since χ = γG, we have χ(g) = 0, by the
induction formula.

In order to understand a bit more about the vertices (Q, δ), we proceed to prove
Theorem A(g). For that we need a few easy lemmas.

(3.4) Lemma. Let N / G, let θ ∈ Irr(N) and let χ ∈ Irr(G|θ). Suppose that
d(χ) = d(θ). If N ⊆M / G and η ∈ Irr(M) lies under χ, then d(η) = d(χ).

Proof. Since η lies over some G-conjugate of θ, it is no loss to assume that η lies
over θ. Now, χ(1)p/η(1)p divides |G : M |p and η(1)p/θ(1)p divides |M : N |p. Since

(χ(1)p/η(1)p)(η(1)p/θ(1)p) = χ(1)p/θ(1)p = |G : N |p = |G : M |p|M : N |p ,
the proof of the lemma easily follows.
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(3.5) Lemma. Let M / G. Suppose that γ = αβ ∈ Irr(M), where α is p′-special,
and β is p-special and invariant under some Sylow p-subgroup P of G. Suppose
that χ ∈ Irr(G) lies over γ with d(χ) = d(γ). Then there is a nucleus (W,ρ) of
χ where W/M is a p′-group and (ρp)M = β. In particular, if Q ∈ Sylp(M), then
(Q, βQ) is a vertex for χ.

Proof. We argue by induction on |G|. Let (N, θ) be a maximal normal pair over
(M,γ). Also, let Q = P ∩N ∈ Sylp(N). We have that β is Q-invariant. Therefore,
so is βQ∩M . By Lemma (3.4), d(γ) = d(θ). This implies that

θp(1)/β(1) = |N : M |p = |Q : Q ∩M | .

Now, θp lies over β, and therefore (θp)Q ∈ Irr(Q) lies over βQ∩M . By degrees, we see
that βQ∩M induces (θp)Q. Since βQ∩M is Q-invariant, this implies that Q∩M = Q,
by Problem (6.1) of [4], for instance. Hence we have that N/M is a p′-group.

Now, let ψ be the Clifford correspondent of χ over θ. By Lemma (3.1), we have
d(ψ) = d(γ). If T < G, by induction, we are done. If T = G, by Corollary (2.4),
N = G, and in this case the proof of the lemma is clear.

The following is a restatement of Theorem A(g).

(3.6) Theorem. Let G be a p-solvable group, and fix a pair (Q, δ) with d(δ) = d.
Then the set Irr(NG(Q, δ)|Q, δ) consists exactly of those χ ∈ Irr(NG(Q, δ)) lying
over δ such that d(χ) = d = d(δ).

Proof. We may assume that NG(Q, δ) = G. So we have that Q / G and δ is
G-invariant. Let χ ∈ Irr(G|Q, δ). Then there is a nucleus (W,γ) such that Q ∈
Sylp(W ) and (γp)Q = δ. Since Q / G, we have that Q ⊆ ker(γp′), and therefore γ
lies over δ. Hence χ lies over δ. By Theorem (3.2), we know that d(χ) = d.

Conversely, suppose that χ ∈ Irr(G|δ) has defect d. By Lemma (3.5), we deduce
that (Q, δ) is a vertex of χ, and the theorem is proven.

4. Characters and radical subgroups

This is one of our key results.

(4.1) Theorem. Suppose that G is p-solvable and let N / G. Suppose that θ ∈
Xp′(N) is Q-invariant, where Q is a p-subgroup of G containing a Sylow p-subgroup
of N . Suppose that Q ⊆ R is a p-subgroup of G such that NN (Q) ⊆ NN(R). Then
θ is R-invariant.

Proof. We argue by induction on |R : Q|. If Q = R, there is nothing to prove. So
we assume that Q < R. Since Q ⊆ R ⊆ NR, N / NR and NN (Q) ⊆ NN (R), it is
no loss to assume that NR = G.

Write D = Q∩N ∈ Sylp(N). We have that D/ NN(Q). Let E = QR / R. Since
NN(Q) normalizes Q and R, it follows that NN (Q) normalizes E. Since E < R, we
have that |E : Q| < |R : Q|, and by induction, we conclude that θ is E-invariant.
We claim that

NN (E) = NN (Q) .

We already have seen that NN (Q) ⊆ NN(E). Now, since D = E∩N , we have that
NG(E) ⊆ NG(D). Hence D/ NG(E). Now, D = N ∩Q ⊆ NN (Q) ⊆ NN(E) ⊆ N ,
and therefore NN (E)/D is a normal p′-subgroup of NG(E)/D. Since E/D is a
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normal p-subgroup of NG(E)/D, we conclude that [NN (E), E] ⊆ D ⊆ Q. Hence
[NN(E), Q] ⊆ Q, and we deduce that NN (E) ⊆ NN (Q). This proves the claim.

Now, we have that NN (E) = NN(Q) ⊆ NN (R). If |R : E| < |R : Q|, since θ
is E-invariant, by induction we will have that θ is R-invariant, and the theorem
would follow in this case. So we may assume that Q / R.

Now, let M = NQ / NR = G. Notice that Q ∈ Sylp(M) and that R ∩M = Q.
Thus R ∈ Sylp(G). We claim that

NG(R) = NG(Q) .

Since R ∩M = Q, we have that NG(R) ⊆ NG(Q). Hence, NN (R) ⊆ NN (Q),
and by hypothesis we have that NN(R) = NN (Q). Now, since G = NR, then
NG(R) = RNN(R) = RNN(Q). Also, since Q / R, we have that R ⊆ NG(Q) and
again NG(Q) = RNN (Q) = NG(R), as claimed.

Now, we have

NG(R)/R ∼= NM (Q)/Q .

By Theorem (2.1.d), we have

|Xp′(G)| = |Irr(NG(R)/R)| = |Irr(NM (Q)/Q)| = |Xp′(M)| .
Now, by Theorem (2.1.b), we have

|Xp′(G)| = |Xp′,R(M)| ,
where Xp′,R(M) is the set of p′-special characters of M which are R-invariant.
Hence, we conclude that all p′-special characters of M are R-invariant. Now, since
θ is Q-invariant, it follows that θ is M -invariant. Since N / M and M/N is a
p-group, it follows by Theorem (2.1.b) that there exists η ∈ Xp′(M) extending θ.
Since η is p′-special, we conclude that η is R-invariant. Hence, θ is R-invariant, as
desired.

Next is Theorem A(d) of the Introduction.

(4.2) Theorem. Let G be p-solvable and suppose that (Q, δ) is a vertex of χ ∈
Irr(G). Then

Op(NG(Q, δ)) = Q .

Proof. We argue by induction on |G|. If χ is p-factorable, then (G,χ) is a nucleus
of χ, Q ∈ Sylp(G), and therefore Op(NG(Q, δ)) = Q, in this case.

Now, we may find a nucleus (W,γ) for χ and a normal p-factorable pair (N, θ)
such that if T = IG(θ), we have that N ⊆ W ⊆ T , Q ∈ Sylp(W ),γ lies over θ,
(γp)Q = δ and (W,γ) is a nucleus for ψ = γT (the Clifford correspondent of χ over
θ). Also, notice that Q ∩ N ∈ Sylp(N), Q ∈ Sylp(QN), and (γp)NQ is the unique
p-special extension of δ to NQ (by Theorem (2.1.c)). Since ψ ∈ Irr(T |Q, δ), by
induction, we have that

Op(NT (Q, δ)) = Q .

Let R = Op(NG(Q, δ)), so that Q ⊆ R.
Now, notice that NN (Q, δ) = NN (Q). This is because δ extends to NQ, and

then every element in NQ normalizing Q fixes δ. Now, NN(Q) ⊆ NG(Q, δ), and
since R / NG(Q, δ), we have that NN (Q) ⊆ NN (R). By Theorem (4.1), θp′ is
R-invariant. Now, if β = γp, we already know that βNQ is the unique p-special
extension of δ to NQ, and that βN = eθp for some integer p. If r ∈ R, we have
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that r normalizes Q and fixes δ. Therefore, r normalizes NQ. Then (βNQ)r is
another p-special extension of δ to NQ. By uniqueness, βNQ is r-invariant. Since
(βNQ)N = eθp, we deduce that θp is r-invariant. Hence, we have seen that R
fixes θp and θp′ . Therefore r ∈ T , and we conclude that R ⊆ T . In particular,
R / NT (Q, δ). Since Q = Op(NT (Q, δ)), we deduce that Q = R, as desired.

Now, we draw some consequences of Theorem (4.1). We remind the reader that
if Q is any p-subgroup of G, the radical closure of Q in G is the last term R of the
chain Pi+1 = Op(NG(Pi)) starting with Q = P0. Since the radical closure of Q in
G is uniquely determined by Q and G, it follows that NG(Q) ⊆ NG(R).

(4.3) Corollary. Suppose that G is p-solvable and let N / G. Suppose that θ ∈
Xp′(N) is Q-invariant, where Q is a p-subgroup of G containing a Sylow p-subgroup
of N . If R is the p-radical closure of Q in G, then θ is R-invariant.

Proof. We have that Q ⊆ R and NG(Q) ⊆ NG(R). Hence, NN(Q) ⊆NN (R), and
Theorem (4.1) applies.

Next is Theorem B of the introduction.

(4.4) Corollary. Suppose that G is p-solvable and let N / G. Suppose that θ ∈
IBr(N) has p′-degree and is Q-invariant, where Q is a p-subgroup of G containing
a Sylow p-subgroup of N . If R is the p-radical closure of Q in G, then θ is R-
invariant.

Proof. By Theorem (2.1.e), we can find a unique η ∈ Xp′(N) such that η0 = θ,
where η0 is the restriction of η to the p-regular elements of N . By uniqueness in
Theorem (2.1.e), we have that η is Q-invariant. Hence, by Corollary (4.3), we have
that η is R-invariant. Hence, θ = η0 is also R-invariant.

We find the following result a little surprising.

(4.5) Theorem. Suppose that G is p-solvable and let χ ∈ Irr(G). Suppose that
(N, θ) is a normal maximal p-factorable pair under χ. If Q ∈ Sylp(N), then Q =
Op(NG(Q)).

Proof. Write θ = θpθp′ , where θp is p-special and θp′ is p′-special. Let R =
Op(NG(Q)). By Corollary (4.3), we know that θp′ is R-invariant. By the Frat-
tini argument, we have that G = NNG(Q). Then we have that NN (Q)/Q is a
p′-subgroup of NG(Q)/Q. Since R/Q is a p-subgroup of NG(Q)/Q, we conclude
that R ∩NN (Q) = Q. Also, we have that RN / G. Now, RN/N is a p-group, and
by Proposition (2.7) of [3], all irreducible constituents of θRN are p-factorable. By
maximality, we conclude that NR = N , and thus R = Q, as required.

(4.6) Corollary. Suppose that G is p-solvable and let χ ∈ Irr(G) with vertex (Q, δ).
Then there is N / G such that Q ∩N is p-radical in G.

Proof. Let (W,γ) be a nucleus for χ such that Q ∈ Sylp(W ) and (W,γ) lies over
(N, θ), a normal maximal factorable pair under χ. Then Q∩N ∈ Sylp(N), and the
result follows from Theorem (4.5).

From Corollary (4.6), it easily follows that vertices contain Op(G), although this
is immediate from their definition.

Suppose that G is p-solvable, let χ ∈ Irr(G) and let (Q, δ) be a vertex of χ. In
view of Theorems (4.1) and (4.5), it is natural to ask if Q needs to be p-radical in
G. The answer is no.
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(4.7) Example. Set p = 2. Consider H = NP , where N / H is cyclic of order 5
and P is cyclic of order 4. For instance, suppose that N = 〈x〉 and P = 〈y〉, where
x = (12345) and y = (2354). Hence xy = x2 and H ⊆ S5. Also, y2 = (25)(34).
Now, take H acting on V = C2 × C2 × C2 × C2 × C2, and let G = V H be the
semidirect product. Now, let θ = 1×λ×1×1×λ ∈ Irr(V ), where λ 6= 1. Hence, the
inertia group of θ in G is T = V 〈y2〉. If µ ∈ Irr(T ) lies over θ, then µG = χ ∈ Irr(G),
(T, µ) is a normal nucleus of χ, and T is not p-radical.

5. Proof of Theorem A (e) and (f)

We start with the following result.

(5.1) Theorem. Let χ ∈ Irr(G) and let (W,γ) be a nucleus for χ. Let Q ∈
Sylp(W ) and assume that Q ⊆ R is a p-subgroup of G such that NW (Q) ⊆NW (R).
Write γ = αβ, where α is p′-special and β is p-special. Then (βQ)R ∈ Irr(R).

Proof. We argue by induction on |G|. Write δ = βQ. By Theorem (2.1.c), we know
that δ ∈ Irr(Q). Let (N, θ) be a maximal p-factorable pair such that (W,γ) is
a nucleus for ψ, the Clifford correspondent of χ over θ, and γ lies over θ. Write
T = IG(θ). Also, write θ = θpθp′ , where θp is p-special and θp′ is p′-special. In
particular, we have that θp′ is Q-invariant. If T = G, then by Corollary (2.4), we
have that W = G. Hence, Q = R, and in this case we already know that δ is
irreducible. So we may assume that T < G.

We claim that NW (Q) ⊆ NW (R ∩ T ). Since NW (Q) ⊆ NW (R), we have that
NW (Q) normalizes R. Since NW (Q) ⊆W ⊆ T , it follows that NW (Q) normalizes
R ∩ T . Hence NW (Q) ⊆NW (R ∩ T ), and the claim follows.

Now, by induction, we have that δR∩T is irreducible. We claim that this character
lies over the irreducible character µ = (θp)N∩Q. First of all, N ∩ Q ∈ Sylp(N),
because Q ∈ Sylp(W ) and N / W . Hence µ is irreducible by Theorem (2.1.c). Now,
since γ lies over θ, by the uniqueness in the factorization of p-factorable characters,
it follows that θp lies under β. Hence, µ lies under β, and therefore under βQ = δ.
Hence, µ lies under δR∩T , as claimed.

Now, observe that N ∩ Q = N ∩ R / R. We claim that R ∩ T = IR(µ) (the
stabilizer of µ in R). If x ∈ R ∩ T , we have that x fixes θ. By the uniqueness of
the decomposition of θ, we also have that x fixes θp. Since x ∈ R ⊆ NG(Q ∩N),
it follows that x fixes (θp)Q∩N = µ. On the other hand, if x ∈ R fixes µ, by the
uniqueness in Theorem (2.1.c), we have that x fixes θp. Now, since NW (Q) ⊆
NW (R), we have that NN (Q) ⊆ NN (R). Since θp′ is Q-invariant, by Theorem
(4.1) we have that θp′ is R-invariant. Hence x fixes θpθp′ = θ and thus x ∈ R ∩ T .
This proves the claim.

Finally, by the Clifford correspondence (Theorem (6.11) of [4]) we have that

δR = (δR∩T )R

is irreducible, as desired.

The following is Theorem A(f) of the introduction.

(5.2) Corollary. Let G be p-solvable and suppose that (Q, δ) is a vertex of χ ∈
Irr(G). Let R be the radical closure of Q in G. Then η = δR ∈ Irr(R). In particular,
d(η) = d(χ).
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Proof. By definition, there is a nucleus (W,γ) of χ such that Q ∈ Sylp(W ), and
(γp)Q = δ. Since R is the radical closure of Q in G, we know that NG(Q) ⊆ NG(R).
In particular, NW (Q) ⊆ NW (R). By Theorem (5.1), we conclude that η = δR ∈
Irr(R). By Lemma (3.1) and Theorem (3.2), we have that d(χ) = d(δ) = d(η), as
desired.

Next, we work towards proving Theorem A(e). We will use the following (which
is the essence of the main results in [9]).

(5.3) Theorem. Suppose that G is p-solvable, let N = Op′(G) and let χ ∈ Irr(G).
Suppose that χ = (αβ)G, where α ∈ Irr(U) has p′-degree and β ∈ Irr(U) is p-special.
Suppose that χN is homogeneous. If Q ∈ Sylp(U), then

CG/N (Q) = Z(Q)N/N .

Proof. This is Theorem (3.5) of [9].

(5.4) Theorem. Let G be p-solvable and let χ ∈ Irr(G). Suppose that χ = γG

for some γ ∈ Irr(W ), and suppose that γ = αβ ∈ Irr(W ), where α has p′-degree
and β is p-special. Let Q ∈ Sylp(W ). Suppose that Q ⊆ R is a p-group such that
whenever R normalizes a p′-subgroup N of G, then CN (R) = CN (Q). Then there
is a defect group D of the p-block of χ such that R ⊆ D and CD(Q) ⊆ Q.

Proof. We argue by induction on |G : Op′(G)| and |G : W |. Let N = Op′(G). By
Theorem (2.1.a), we have that N ∩W ⊆ ker(β). Hence, it easily follows that β has
a p-special extension β̂ ∈ Irr(WN/N). Then

γWN = (αβ̂W )WN = αWN β̂ ;

notice that here αWN ∈ Irr(WN) has p′-degree. Also, Q ∈ Sylp(WN). If WN >
W , then by induction, we are done. So we may assume that N ⊆ W . Now,
let θ ∈ Irr(N) be an irreducible constituent of γN and let T be the stabilizer of
θ in G. Since N ⊆ ker(β), we have that θ is an irreducible constituent of αN .
Since α has p′-degree, we may assume that θ is Q-invariant (since Q permutes
the irreducible constituents of αN ). Now, R normalizes N , and by hypothesis, we
have that CN (R) = CN (Q). By Theorem (4.1), we conclude that θ is R-invariant.
Thus R ⊆ T . Now, Q ⊆ T ∩W , and then T ∩W has p′-index in W . Therefore
βT∩W is irreducible and p-special by Theorem (2.1.c). Now, let η be the Clifford
correspondent of α over θ, which has p′-degree. We have

(ηβT∩W )W = ηWβ = αβ

and therefore

(ηβT∩W )G = χ .

In particular, (βT∩W η)T = µ is the Clifford correspondent of χ over θ. If T < G,
by induction, there is a defect group D of the block of µ satisfying R ⊆ D and
CD(Q) ⊆ Q. Now, by Theorem (9.14) of [8], D is a defect group of the block of χ,
and we are done in this case. So we may assume that T = G, and that the defect
groups of the block of χ are the Sylow p-subgroups of G (by Theorem (10.20) of
[8]). Now, by Theorem (5.3), we know that

CG/N (Q) = Z(Q)N/N .
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In particular, CG(Q) ⊆ W . Now, let Q ⊆ R ⊆ D ∈ Sylp(G). Then CD(Q) ⊆ W .
Since QCD(Q) is a p-subgroup of W containing Q ∈ Sylp(W ), we conclude that
CD(Q) ⊆ Q, as desired.

This is Theorem A(e) of the Introduction.

(5.5) Theorem. Let G be p-solvable and suppose that (Q, δ) is a vertex of χ. Let
R be the radical closure of Q in G. Then there is a defect group D of the p-block
of χ such that Q ⊆ R ⊆ D and

CD(Q) = Z(Q) .

Proof. Let (W,γ) be a nucleus for χ with Q ∈ Sylp(W ). Now, since NG(Q) ⊆
NG(R), it follows that if R normalizes any p′-subgroup N of G, then CN (Q) =
NN(Q) ⊆NN (R) = CN (R). Now, Theorem (5.4) applies.

6. Lifting Brauer characters

We need the following.

(6.1) Lemma. Suppose that G is p-solvable, and let ϕ ∈ IBr(G).
(a) Suppose that G = MN , where M,N / G. If the irreducible constituents of

ϕN and of ϕM have p′-degree, then ϕ has p′-degree.
(b) There exists a unique maximal normal subgroup E of G such that the ir-

reducible constituents of ϕE have p′-degree. Furthermore, if ϕE = eθ for some
θ ∈ IBr(E), then ϕ has p′-degree.

Proof. (a) Arguing as in Theorem (2.2), we may easily assume that G/N and G/M
are simple groups. If, for instance, G/N is a p′-group, then ϕ has p′-degree by
Theorem (8.30) of [8]. So we may assume that G/N ∩M is a p-group. Now, let
δ ∈ IBr(N ∩M) lie under ϕ. If θ ∈ IBr(N) lies under ϕ and over δ, we have that
θN∩M = δ. Hence, δ is N -invariant. By the same argument, δ is M -invariant.
Hence, δ is G-invariant. Also, since θ has p′-degree, so does δ. By Green’s theorem
(Theorem (8.11) of [8]), ϕN∩M = δ, and the proof of the first part follows.

(b) It is clear that such a normal subgroup E exists, by part (a). Also, by
Theorem (8.30) of [8], we have that Op′(G/E) = 1. So if E < G, we may find
a normal subgroup K of G with K/E a p-group. By Green’s theorem, there is a
unique irreducible Brauer character τ of K which lies over θ. In fact, τ extends
θ, and therefore also has p′-degree. By uniqueness, we have that ϕK = eτ . This
contradicts the maximality of E.

For our convenience, we will use the following characterization of the vertex
of an irreducible Brauer character of a p-solvable group. If G is p-solvable and
ϕ ∈ IBr(G), by Huppert’s theorem (Theorem (10.11) of [8]), we know that there
is some α ∈ IBr(U) of p′-degree, such that αG = ϕ. In fact, if β ∈ IBr(V ) is
some other irreducible Brauer character of p′-degree, it is a fact that the Sylow p-
subgroups of U and V are G-conjugate. (Apply Theorem B of [5] with π = p′.) This
conjugacy class of p-subgroups of G uniquely determined by ϕ up to G-conjugacy
are the vertices of ϕ. Recall that we denote by IBr(G|Q) the set of irreducible
Brauer characters of G with vertex Q.

As a consequence of the definition, notice that if some Brauer character µ induces
ϕ, then every vertex of µ is a vertex of ϕ.
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Fix a p-subgroup Q of a p-solvable group G and suppose that ϕ ∈ IBr(G|Q).
Let N / G, and let θ ∈ IBr(N) lie under ϕ. We say that θ is Q-good for ϕ if the
Clifford correspondent of ϕ over θ has vertex Q.

(6.2) Lemma. Suppose that G is p-solvable, let Q be a p-subgroup of G and let
ϕ ∈ IBr(G|Q). Suppose that N / G. Then there is an irreducible constituent θ of
ϕN which is Q-good, and any two of them are NG(Q)-conjugate.

Proof. Let η ∈ IBr(N) be any irreducible constituent of ϕN . Let I be the inertia
group of η in G and let µ ∈ IBr(I) be the Clifford correspondent of ϕ over η. Let P
be a vertex of µ. Hence, P is a vertex of ϕ, and we deduce that P g = Q for some
g ∈ G. Let θ = ηg. Then T = Ig is the stabilizer of θ in G, and τ = µg, which is
the Clifford correspondent of ϕ over θ, has vertex P g = Q. Suppose now that θx is
also Q-good for ϕ for some x ∈ G. Since τx is the Clifford correspondent of ϕ over
θx, we have that τx has vertex Q. However, since τ has vertex Q, it easily follows
that τx has vertex Qx. Hence, Qx = Qt

x

for some t ∈ T . Thus t−1x ∈ NG(Q) and
θt
−1x = θx, as desired.

The next result, which is Theorem A(a) of the Introduction, proves that the
irreducible characters of G with vertex (Q, 1Q) provide a canonical lifting of the
irreducible Brauer characters of a finite p-solvable group G with vertexQ. M. Isaacs
constructed in [3] another (apparently) canonical set of liftings Bp′(G) ⊆ Irr(G) of
IBr(G). We do know that for p odd, both liftings coincide. However, at the time of
this writing, we do not know what happens in general. Perhaps surprisingly, we need
the Isaacs Bp′ -lifting in order to prove ours. The only facts that we need to know
about Bp′-characters are that normal irreducible constituents of Bp′ -characters are
Bp′-characters (something that we do not know about our lifting) and that the
Bp′-characters of p′-degree are exactly the p′-special characters.

(6.3) Theorem. Let Q be a p-subgroup of G. Then restriction to p-regular ele-
ments defines a natural bijection Irr(G|Q, 1Q)→ IBr(G|Q).

Proof. We argue by induction on |G|. Let χ ∈ Irr(G|Q, 1Q). First, we prove that
χ0 ∈ IBr(G|Q). By the definition of the vertex (Q, 1Q), we know that there exists
a nucleus (W,γ) of χ such that Q ∈ Sylp(W ) and (γp)Q = 1Q. Now, by definition
of the nucleus, we know that there exists (N, θ), a maximal p-factorable normal
pair under χ, such that N ⊆ W ⊆ T , where T = IG(θ), θ lies under γ, and (W,γ)
is a nucleus for the Clifford correspondent ψ of χ over θ. Thus ψ ∈ Irr(T |Q, 1Q).
Now, since (γp)Q = 1Q, by Theorem (2.1.c), we have that γp = 1W , and we deduce
that γ is p′-special. Since θ is under γ, we deduce that θ is p′-special. By Theorem
(2.1.e), we have that ϕ = θ0 ∈ IBr(N), and by the uniqueness in that result, we
have that T is also the stabilizer of ϕ in G. If T = G, then θ = χ, Q ∈ Sylp(G)
and χ0 = ϕ ∈ IBr(G). Since ϕ has p′-degree, we also have that Q is a vertex of ϕ
in this case. So we may assume that T < G. By induction, ψ0 ∈ IBr(T |Q). Also,
ψ0 lies over θ0 = ϕ, and by the Clifford correspondence for Brauer characters, we
have that

χ0 = (ψG)0 = (ψ0)G ∈ IBr(G|Q) .

Write σ = χ0 ∈ IBr(G). With the previous notation, we claim that N is the
maximal normal subgroup of G such that the irreducible constituents of σN have
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p′-degree. Suppose that E is such a normal subgroup. Since the irreducible con-
stituents of σN (which are G-conjugates of ϕ) have p′-degree, we have that N ⊆ E.
Let τ ∈ IBr(E) lie under σ and over ϕ. By Theorem (2.1.e), let κ ∈ Irr(E) be
p′-special such that κ0 = τ . By Theorem (2.1.f), we have that κ lies over θ. Since
(N, θ) is maximal p-factorable, we have that N = E, as claimed.

Now, we prove that our map is one-to-one. Suppose that χ0 = η0 = σ for
some η ∈ Irr(G|Q, 1Q). We want to prove that χ = η. As before, we may find a
maximal p-factorable pair (M, ν) for η such that the Clifford correspondent ξ of
η over ν lies in Irr(I|Q, 1Q), where I is the inertia group of ν in G. Now, by the
previous paragraph, we know that N is the maximal normal subgroup such that
the irreducible constituents of σN have p′-degree. By the same argument applied
to η, we deduce that N = M , and that θ0 and ν0 are G-conjugate. Hence, by
Theorem (2.1.e), we have that θ and ν are G-conjugate. If T = G, then N =
M = G, η = ν = θ = χ, and in this case, we are done. So we may assume that
T is proper in G. By induction, we have that ψ0 and ξ0 have vertex Q. Since
both are Clifford correspondents of σ over N , by Lemma (6.2), we deduce that θ0

and ν0 (and therefore, θ and ν) are NG(Q)-conjugate. Suppose that νn = θ for
n ∈ NG(Q). Now, In = T , and ξn ∈ Irr(T |Q, 1Q). Now, ψ0 and (ξn)0 are the
Clifford correspondent of σ over θ. By uniqueness, ψ0 = (ξn)0, and by induction
we have that ψ = ξn. Hence

χ = ψG = (ξn)G = η ,

and the injectivity is proven.
Finally, we prove that our map is surjective. Suppose that ϕ ∈ IBr(G|Q). By

Lemma (6.1), let N be maximal such that the irreducible constituents of ϕN have
p′-degree. By Lemma (6.2), let θ ∈ IBr(N) be an irreducible constituent of ϕN such
that, if T is the stabilizer of θ in G and µ ∈ IBr(T |θ) is the Clifford correspondent
of ϕ over θ, then µ has vertex Q. If T = G, by Lemma (6.1) we have that ϕ has
p′-degree. In this case Q ∈ Sylp(G). By Theorem (2.1.e), there is some p′-special
character ψ of G such that ψ0 = ϕ. It is clear in this case that ψ ∈ Irr(G|Q, 1Q).
So we may assume that T is proper in G. Now, let χ ∈ Bp′(G) be an Isaacs lifting
for ϕ. The irreducible constituents of χN are in Bp′(N), so they lift irreducible
characters of N . Hence, there is some ν ∈ Bp′(N) such that ν0 = θ. Since ν has
p′-degree, ν is p′-special by Lemma (5.4) of [3]. Also, we know that T = IG(ν) by
uniqueness. We claim that (N, ν) is a maximal p-factorable normal pair below χ.
Suppose that N ⊆ M / G is such that the irreducible constituents of χM are p-
factorable. Let η ∈ Irr(M) be one of them over ν. Since η ∈ Bp′(M) is p-factorable,
we have that η is p′-special by Lemma (5.4) of [3]. Now η0 lies under ϕ and has
p′-degree. By the maximality of N , we conclude that N = M . Thus (N, ν) is a
maximal normal pair, as desired. By induction, there is some ξ ∈ Irr(T |Q, 1Q)
such that ξ0 = µ. By definition, there is some nucleus (W,γ) for ξ such that γ is
p′-special and Q ∈ Sylp(W ). Suppose that (M,ρ) is a maximal normal p-factorable
pair for ξ. By the second paragraph, we know that ρ is p′-special and that M is the
maximal normal subgroup of T such that the irreducible constituents of µM have
p′-degree. Since µN = eθ and θ has p′-degree, we deduce that N ⊆M and that ρ0

lies over θ. By Theorem (2.1.f), we deduce that ρ lies over θ. Hence, ξ lies over ν.
Therefore, we conclude that (W,γ) is a nucleus of ξG. Therefore, ξG ∈ Irr(G|Q, 1Q)
lifts ϕ, and the proof of the theorem is complete.
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E-mail address: gabriel@uv.es

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=99b:20014
http://www.ams.org/mathscinet-getitem?mr=82b:20012
http://www.ams.org/mathscinet-getitem?mr=85h:20012
http://www.ams.org/mathscinet-getitem?mr=57:417
http://www.ams.org/mathscinet-getitem?mr=97a:20006
http://www.ams.org/mathscinet-getitem?mr=81f:20013
http://www.ams.org/mathscinet-getitem?mr=2000a:20018
http://www.ams.org/mathscinet-getitem?mr=97c:20015
http://www.ams.org/mathscinet-getitem?mr=2001h:20013
http://www.ams.org/mathscinet-getitem?mr=91h:20023

	1. Introduction
	2. Inducing characters
	3. Vertices for characters
	4. Characters and radical subgroups
	5. Proof of Theorem A (e) and (f)
	6. Lifting Brauer characters
	References

