Commensurability of 1-cusped hyperbolic 3-manifolds
Authors:
Danny Calegari and Nathan M. Dunfield
Journal:
Trans. Amer. Math. Soc. 354 (2002), 2955-2969
MSC (2000):
Primary 57M25, 57M50
DOI:
https://doi.org/10.1090/S0002-9947-02-02988-4
Published electronically:
February 25, 2002
MathSciNet review:
1895211
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We give examples of non-fibered hyperbolic knot complements in homology spheres that are not commensurable to fibered knot complements in homology spheres. In fact, we give many examples of knot complements in homology spheres where every commensurable knot complement in a homology sphere has non-monic Alexander polynomial.
- I. R. Aitchison and J. H. Rubinstein, Combinatorial cubings, cusps, and the dodecahedral knots, Topology ’90 (Columbus, OH, 1990) Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 17–26. MR 1184399
- Robert Bieri, Walter D. Neumann, and Ralph Strebel, A geometric invariant of discrete groups, Invent. Math. 90 (1987), no. 3, 451–477. MR 914846, DOI https://doi.org/10.1007/BF01389175
- A. Borel, Commensurability classes and volumes of hyperbolic $3$-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), no. 1, 1–33. MR 616899
- Kenneth S. Brown, Trees, valuations, and the Bieri-Neumann-Strebel invariant, Invent. Math. 90 (1987), no. 3, 479–504. MR 914847, DOI https://doi.org/10.1007/BF01389176
- Michel Boileau and Shicheng Wang, Non-zero degree maps and surface bundles over $S^1$, J. Differential Geom. 43 (1996), no. 4, 789–806. MR 1412685
- S. Boyer and X. Zhang, On Culler-Shalen seminorms and Dehn filling, Ann. of Math. (2) 148 (1998), no. 3, 737–801. MR 1670053, DOI https://doi.org/10.2307/121031
- Gerhard Burde and Heiner Zieschang, Knots, De Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 1985. MR 808776
- Marc Culler, C. McA. Gordon, J. Luecke, and Peter B. Shalen, Dehn surgery on knots, Ann. of Math. (2) 125 (1987), no. 2, 237–300. MR 881270, DOI https://doi.org/10.2307/1971311
- Patrick J. Callahan, Martin V. Hildebrand, and Jeffrey R. Weeks, A census of cusped hyperbolic $3$-manifolds, Math. Comp. 68 (1999), no. 225, 321–332. With microfiche supplement. MR 1620219, DOI https://doi.org/10.1090/S0025-5718-99-01036-4
- Marc Culler and Peter B. Shalen, Varieties of group representations and splittings of $3$-manifolds, Ann. of Math. (2) 117 (1983), no. 1, 109–146. MR 683804, DOI https://doi.org/10.2307/2006973
- Nathan M. Dunfield, Alexander and Thurston norms of 3-manifolds fibering over the circle, Pacific J. Math 200 (2001), no. 1, 43–58, arXiv:math.GT/9908050.
- O. Goodman, Snap, http://www.ms.unimelb.edu.au/~snap/.
- Hugh M. Hilden, María Teresa Lozano, and José María Montesinos-Amilibia, On the arithmetic $2$-bridge knots and link orbifolds and a new knot invariant, J. Knot Theory Ramifications 4 (1995), no. 1, 81–114. MR 1321291, DOI https://doi.org/10.1142/S0218216595000053
- Craig D. Hodgson, G. Robert Meyerhoff, and Jeffrey R. Weeks, Surgeries on the Whitehead link yield geometrically similar manifolds, Topology ’90 (Columbus, OH, 1990) Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 195–206. MR 1184411
- A. Hatcher and W. Thurston, Incompressible surfaces in $2$-bridge knot complements, Invent. Math. 79 (1985), no. 2, 225–246. MR 778125, DOI https://doi.org/10.1007/BF01388971
- E. Kaltofen, Polynomial factorization, Computer Algebra (B. Buchberger, G. Collins, and R. Loos, eds.), Springer Verlag, Heidelberg, 2 ed., 1982, pp. 95–113.
- Erich Kaltofen, Polynomial factorization 1982–1986, Computers in mathematics (Stanford, CA, 1986) Lecture Notes in Pure and Appl. Math., vol. 125, Dekker, New York, 1990, pp. 285–309. MR 1068540
- William H. Kazez (ed.), Geometric topology, AMS/IP Studies in Advanced Mathematics, vol. 2, American Mathematical Society, Providence, RI; International Press, Cambridge, MA, 1997. MR 1470749
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI https://doi.org/10.1090/gsm/058
- D. D. Long and A. W. Reid, Commensurability and the character variety, Math. Res. Lett. 6 (1999), no. 5-6, 581–591. MR 1739217, DOI https://doi.org/10.4310/MRL.1999.v6.n5.a11
- Alexander Lubotzky, Subgroup growth and congruence subgroups, Invent. Math. 119 (1995), no. 2, 267–295. MR 1312501, DOI https://doi.org/10.1007/BF01245183
- Curtis T. McMullen, The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology, to appear in Ann. Sci. École. Norm. Sup. (4).
- Alan W. Reid, Arithmeticity of knot complements, J. London Math. Soc. (2) 43 (1991), no. 1, 171–184. MR 1099096, DOI https://doi.org/10.1112/jlms/s2-43.1.171
- Józef Marcinkiewicz and Antoni Zygmund, Sur la dérivée seconde généralisée, Bull. Sém. Math. Univ. Wilno 2 (1939), 35–40 (French). MR 45
- Leo F. Epstein, A function related to the series for $e^{e^x}$, J. Math. Phys. Mass. Inst. Tech. 18 (1939), 153–173. MR 58, DOI https://doi.org/10.1002/sapm1939181153
- P. B. Shalen, Representations of 3-manifold groups, Handbook of geometric topology, Elsevier Press, to appear.
- L. E. Dickson, All integers except $23$ and $239$ are sums of eight cubes, Bull. Amer. Math. Soc. 45 (1939), 588–591. MR 28, DOI https://doi.org/10.1090/S0002-9904-1939-07041-9
- William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524, DOI https://doi.org/10.1090/S0273-0979-1982-15003-0
- Antoni Zygmund, Sur un théorèm de M. Fejér, Bull. Sém. Math. Univ. Wilno 2 (1939), 3–12 (French). MR 52
- J. Weeks, SnapPea, http://www.northnet.org/weeks/.
- Waterloo Maple Software, Maple 6, 2000.
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57M25, 57M50
Retrieve articles in all journals with MSC (2000): 57M25, 57M50
Additional Information
Danny Calegari
Affiliation:
Department of Mathematics, Harvard University, Cambridge Massachusetts 02138
MR Author ID:
605373
Email:
dannyc@math.harvard.edu
Nathan M. Dunfield
Affiliation:
Department of Mathematics, Harvard University, Cambridge Massachusetts 02138
MR Author ID:
341957
ORCID:
0000-0002-9152-6598
Email:
nathand@math.harvard.edu
Keywords:
Virtual Fibration Conjecture,
commensurability,
Alexander polynomial,
character variety
Received by editor(s):
February 7, 2001
Received by editor(s) in revised form:
August 25, 2001
Published electronically:
February 25, 2002
Additional Notes:
Both authors were partially supported by the National Science Foundation.
Article copyright:
© Copyright 2002
American Mathematical Society