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HOPF MODULES AND THE DOUBLE
OF A QUASI-HOPF ALGEBRA

PETER SCHAUENBURG

Abstract. We give a different proof for a structure theorem of Hausser and
Nill on Hopf modules over quasi-Hopf algebras. We extend the structure the-
orem to a classification of two-sided two-cosided Hopf modules by Yetter-
Drinfeld modules, which can be defined in two rather different manners for
the quasi-Hopf case. The category equivalence between Hopf modules and
Yetter-Drinfeld modules leads to a new construction of the Drinfeld double of
a quasi-Hopf algebra, as proposed by Majid and constructed by Hausser and
Nill.

1. Introduction

Drinfeld’s quantum double construction has established itself as an important
tool in the theory of Hopf algebras. In particular, it furnishes nontrivial exam-
ples of quasitriangular, non-commutative and non-cocommutative Hopf algebras,
and the double D(H) can be used to study the original Hopf algebra H . On
the categorical level, the Drinfeld double can be explained by the construction
of the center of a monoidal category; this is a braided monoidal category Z(C)
that can be constructed in a natural way from any monoidal category C. One
has D(H)M∼= Z(HM) for any finite-dimensional Hopf algebra H . Yetter-Drinfeld
modules can be seen as a convenient intermediate step in this equivalence; one
has Z(HM) ∼= HYDH (even if H is infinite-dimensional, which makes Yetter-
Drinfeld modules interesting beyond situations where the quantum double can be
constructed), and the equivalence HYDH ∼= D(H)M is a very easy step if H is
finite-dimensional. We refer to Kassel’s book [7] for a complete account.

Quasi-Hopf algebras were introduced by Drinfeld in [2]. Although they arise
there primarily from the deformation theoretical treatment of ordinary Hopf alge-
bras, the conceptual categorical explanation of their axioms is already discussed in
detail in [2]: The definition ensures that the category of finite-dimensional mod-
ules over a quasi-Hopf algebra H is a monoidal category with duality. The tensor
product in the module category is the tensor product over the base field k, and H
has a comultiplication that allows one to endow this tensor product with a module
structure, and an invertible element φ ∈ H ⊗H ⊗H responsible for the associativ-
ity of tensor products in the module category. The key difference compared to an
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ordinary Hopf algebra is that comultiplication is no longer coassociative, but only
so up to conjugation by φ.

The first quantum double quasi-Hopf algebra appeared in a paper by Dijkgraaf,
Pasquier, and Roche [1], namely, a certain variant Dω(G) of the Drinfeld double of
the group algebra kG of a finite group, modified by a three-cocycle ω on G.

Majid [10] gave the following conceptual explanation of the double Dω(G): It is
simply the Drinfeld double of a certain quasi-Hopf algebra, namely the dual group
algebra kG, with a nontrivial quasi-Hopf structure ω ∈ kG⊗kG⊗kG that identifies
with the group cocycle ω. Of course, one has to explain now what the Drinfeld
double of a quasi-Hopf algebra is, and Majid announces a construction. Note that
the generalization from the Hopf to the quasi-Hopf case cannot be expected to be
trivial; after all, the double of a Hopf algebra H is modelled on H ⊗ H∗, with
H and H∗ as subalgebras. But if H is just a quasi-Hopf algebra, then H∗ is
not an associative algebra, so one is at a loss looking for an associative algebra
structure on H ⊗H∗. Majid [10] explains why the construction should work; the
module category over the Drinfeld double D(H) of an ordinary Hopf algebra H
is equivalent to the center of the category of H-modules. The center construction
is a purely categorical procedure assigning a braided monoidal category to any
monoidal category; of course it can be applied to the category of H-modules also
when H is just a quasi-Hopf algebra. The result should be the module category
for another quasi-Hopf algebra D(H), the Drinfeld double of H — by the general
‘reconstruction’ principles by which every reasonably nice monoidal category has
to be the representation category of some quasi-Hopf algebra. Next, of course, one
would like to know the double explicitly. Majid claims to show that D(H) can,
once again, be modelled on the tensor product H ⊗H∗. As we shall try to indicate
at the end of Section 9, there is some doubt that the reasoning in [10] is complete
here. However, Hausser and Nill [3, 4] have indeed shown by explicit calculations
that the double can be realized on H ⊗H∗, although perhaps not quite in the way
anticipated in [10]. The basic idea in [10] is that the center of the category HM of
left H-modules is equivalent to the category HYDH of Yetter-Drinfeld H-modules.
The latter (which are defined in [10]) are modules equipped with a certain coaction
of H (which would be a comodule structure in the ordinary Hopf case) satisfying
two compatibility conditions. Thus, since a Yetter-Drinfeld module is given by an
action of H and an action of H∗ satisfying some commutation relations, one may
surmise that it can equivalently be given by an action of H⊗H∗, where the latter is
endowed with a suitable multiplication that can be read off from the compatibility
conditions. The additional idea introduced by Hausser and Nill to make this work
is the realization that there are two rather different, but equivalent, variants of
Yetter-Drinfeld modules in the quasi-Hopf case. (Actually the terminology in [3, 4]
is quite different, and we will not go into details on how exactly to relate it to ours.)
One version (called a coherent δ-implementer by Hausser and Nill) is better suited
to describing multiplication in the Drinfeld double D(H) = H⊗H∗, while the other
(called a coherent ∆-flip operator) is better suited to describing comultiplication,
antipode, and quasitriangular structure.

In the present paper we will be dealing with another characterization of Yetter-
Drinfeld modules (hence the Drinfeld double and the center), namely the equiva-
lence of the category of Yetter-Drinfeld modules with the category H

HMH
H of Hopf

modules; this equivalence originally arose in work of Woronowicz [17] on differential
calculi on quantum groups, and was developed for Hopf algebras in [13]. We will
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extend it to the quasi-Hopf algebra setting, and utilize it in the construction of the
Drinfeld double.

Hopf modules over quasi-Hopf algebras were introduced by Hausser and Nill [5]
to develop an integral theory for quasi-Hopf algebras. Note that the definition
of Hopf modules for quasi-Hopf algebras requires a little thought, since a quasi-
Hopf algebra is not a coalgebra, hence there is no immediate notion of comodule.
But one can define HMH

H as the category of H-comodules within the monoidal
category HMH of H-bimodules. With this categorical description comes an easy
supply of such Hopf modules, namely the cofree H-comodules P ⊗ H generated
by P ∈ HMH . In particular, one can apply this to one-sided H-modules. Now
the structure theorem of Hausser and Nill, for which we shall give a new proof in
Section 3, asserts that every Hopf module in HMH

H is of the form V ⊗H for some
V ∈ HM, provided H is a quasi-Hopf algebra. The equivalence HM ∼= HMH

H

thus established is actually a monoidal equivalence, when we endow HMH
H with

the monoidal category structure defined by the tensor product over H .
We define the Hopf module category H

HMH
H to be the category of H-H-bico-

modules in the monoidal category HMH . There are two natural monoidal category
structures on H

HMH
H , namely tensor product and cotensor product overH , which we

prove to be isomorphic if H is a quasi-Hopf algebra. Now by the structure theorem
of Hausser and Nill, understanding the structure of Hopf modules in H

HMH
H amounts

to describing all the additional left H-coactions making V ⊗H ∈ HMH
H an object of

H
HMH

H , for V ∈ HM. We attack this problem in two different ways, arriving at two
different notions of Yetter-Drinfeld modules. We call Yetter-Drinfeld modules of
the first kind the ones appearing (without a name) in Majid’s paper [10]. We study
Yetter-Drinfeld modules of the second kind first, in Section 5. They arise from the
following approach: A left H-coaction making M = V ⊗H an object in H

HMH
H is by

definition a morphism Λ: M → H ⊗M in HMH
H . The latter category is equivalent

to HM, so we can send Λ through the category equivalence to give, as it turns out,
a certain map λ′ : V → H ⊗ V , which makes V a Yetter-Drinfeld module of the
second kind. The definition of the latter can be made to look very simple. In fact,
using terminology of Pareigis [12], one may say that a Yetter-Drinfeld module of
the second kind is simply an H-comodule — however, the coalgebra H is situated
in the monoidal category HMH , whereas its comodule V is situated in a different
category HM, on which the category HMH acts in a nontrivial way. This action
is described explicitly in Section 4.

Yetter-Drinfeld modules of the second kind are well-suited to the description of
the Drinfeld double of H as an associative algebra, which we give in Section 6. Al-
though the formula for multiplication is quite complicated, it is rather easy to verify
that it is associative, thanks to the conceptual nature of the Hopf module category,
which supplies us with ‘enough’ modules, without the necessity of performing large
calculations.

We study Yetter-Drinfeld modules of the first kind in Section 8. These objects
were introduced (with different conventions) by Majid [10] to describe the center
of the module category HM. We repeat this description, and we show that Yetter-
Drinfeld modules of the first kind can also be used to classify Hopf modules in
H
HMH

H . This is based on the following approach to Hopf module structures: By
the structure theorem of Hausser and Nill, any M ∈ HMH

H is the cofree right
H-comodule over some V ∈ HM, within the category HMH . The problem of
describing all bicomodule structures on a cofree right H-comodule was essentially



3352 PETER SCHAUENBURG

treated by Tambara; strictly speaking only the bimodule structures on a free right
module over a k-algebra were treated in [16], but the generalization to monoidal
categories, hence also to comodules in monoidal categories, is a trivial step. Tam-
bara’s description involves a flipping map σ : V ⊗ H → H ⊗ V , and it yields a
category equivalence of HHMH

H with the center of HM, or the category of Yetter-
Drinfeld modules of the first kind, if H is a quasi-Hopf algebra. In particular, we
also obtain a category equivalence between Yetter-Drinfeld modules of the first and
second kinds, which parallels the correspondence between the δ-implementers and
∆-flip operators of Hausser and Nill.

Yetter-Drinfeld modules of the first kind are well suited to describing the quasi-
triangular quasi-Hopf algebra structure of the double D(H), which we do in Section
9.

Summing up, we think that the correspondence between Hopf modules and
Yetter-Drinfeld modules may be an interesting fact in itself. While the construction
of the quantum double is not new, we believe that some additional insight can be
gained by treating it through this correspondence. In particular, it is our feeling
that this approach allows us to replace some explicit and ad hoc calculations with
somewhat more conceptual reasoning.

2. Preliminaries

Throughout the paper we work over a base field k. If nothing else is indicated,
vector spaces, algebras, etc. are over k, ⊗ means ⊗k, Hom means Homk, and
so forth. For any k-algebra we write AM for the category of left A-modules, with
obvious variants for right modules and bimodules. Aop denotes the opposite algebra.
We write a ⇀ ϕ and ϕ ↼ a for the canonical left and right actions of an algebra
A on its dual space A∗. If A,B are algebras, and M ∈ MA, N ∈ AMB, and
P ∈ BM are (bi-)modules, we will take the liberty to pretend that the canonical
isomorphisms (M ⊗A N) ⊗B P ∼= M ⊗A (N ⊗B P ) and A ⊗A N ∼= N ∼= N ⊗B B
are identities.

2.1. Monoidal categories. A monoidal category C = (C,⊗,Φ, I, λ, ρ) consists of
a category C, a functor ⊗ : C × C → C, a “unit” object I and natural isomorphisms
Φ = ΦXY Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z), λ : I ⊗ X → X and ρ : X ⊗ I → X ,
which are required to be ‘coherent’. We refer to [6, 7] (where monoidal categories
are called tensor categories) for precise definitions and background information.
We shall always assume that the morphisms λ and ρ are identities; when Φ is the
identity as well, C is called strict. Coherence is expressed in Mac Lane’s pentagon

(W ⊗ ΦXY Z)ΦW,X⊗Y,Z(ΦWXY ⊗ Z) = ΦW,X,Y⊗ZΦW⊗X,Y,Z ,

where both sides are morphisms ((W ⊗X)⊗ Y )⊗ Z → W ⊗ (X ⊗ (Y ⊗ Z)), and
the condition ΦXIY = idXY , which also implies ΦXY I = ΦIXY = idXY . The
key consequence of coherence is that all formal diagrams composed of associator
morphisms commute.

We define an (incoherent) tensor functor

(F , ξ) : (C,⊗,Φ, I)→ (D,⊗,Φ′, I ′)

to consist of a functor F satisfying F(I) = I ′, and a natural isomorphism ξ : F(X)⊗
F(Y )→ F(X ⊗ Y ) such that ξXI = ξIX = idF(X). If ξ is the identity, we say that
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F is strict. We define a monoidal functor to be a tensor functor that is coherent in
the sense that the diagrams

(F(X)⊗F(Y ))⊗F(Z)

Φ′

��

ξ⊗id
// F(X ⊗ Y )⊗F(Z)

ξ
// F((X ⊗ Y )⊗ Z)

F(Φ)

��

F(X)⊗ (F(Y )⊗F(Z))
id⊗ξ

// F(X)⊗ F(Y ⊗ Z)
ξ

// F(X ⊗ (Y ⊗ Z))

commute. (Warning: In [7] monoidal functors are called tensor functors.)
A nice way of expressing coherence is to say [7, XI.5] that every monoidal cate-

gory is equivalent, via a monoidal functor, to a strict one. Since monoidal functors
can be used to transport notions expressible in the language of monoidal categories,
this leads to the slogan that, to prove a general fact on monoidal categories, it is
always sufficient to treat the strict case. Before adopting this widespread usage
of coherence, the author would like to acknowledge that he knows of no general
metatheorem that would, once and for all, settle the question of what types of facts
this reasoning can be applied to.

Let C be a monoidal category and X ∈ C. A left dual of X is a collection
(X∨, ev, db) in which X∨ is another object of C, and ev : X∨⊗X → I and db: I →
X⊗X∨ are morphisms (called evaluation and coevaluation, respectively) such that(

X
db⊗X−−−−→ (X ⊗X∨)⊗X Φ−→ X ⊗ (X∨ ⊗X) X⊗ev−−−−→ X

)
= idX ,(

X∨
X∨⊗db−−−−−→ X∨ ⊗ (X ⊗X∨) Φ−1

−−→ (X∨ ⊗X)⊗X∨ ev⊗X∨−−−−−→ X∨
)

= idX∨ .

If every object of C has a left dual, we say that C is (left) rigid. In this case X 7→ X∨

can be made into a contravariant functor in a natural way. Moreover, there exists
a unique natural isomorphism D : Y ∨ ⊗X∨ → (X ⊗ Y )∨ such that

(Y ∨ ⊗X∨)⊗ (X ⊗ Y )
D⊗id

//

��

(X ⊗ Y )∨ ⊗ (X ⊗ Y )

ev

��

Y ∨ ⊗ ((X∨ ⊗X)⊗ Y )
ev(Y ∨⊗(ev⊗Y ))

// I

(2.1)

commutes.
Right duals and right rigidity are defined by switching sides.

2.2. Coalgebras in monoidal categories. Assume given a monoidal category C.
An algebra in C is a pair (A,∇) in which A is an object of C, and ∇ : A ⊗A → A
is a morphism, called multiplication, such that

∇(∇⊗A) = ∇(A⊗∇)Φ: (A⊗A)⊗A→ A,

i.e., multiplication is associative, and there exists a unit morphism η : I → A such
that ∇(A ⊗ η) = idA = ∇(η ⊗ A). A left A-module over an algebra A in C is an
object M in C with a morphism µ : A⊗M →M such that µ(η ⊗M) = idM and

µ(∇⊗M) = µ(A⊗ µ)Φ: (A⊗ A)⊗M →M.

Many elementary facts of ring and module theory can be carried over to this gener-
alized notion of algebra (which, of course, contains k-algebra theory as the special
case C = Mk). More details can be found in [11]. It is convenient to utilize the
coherence result by which any base category C is equivalent as a monoidal category
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to a strict one — hence, if one proves general results on algebras and modules, one
can always assume that the base category is strict.

Since algebras and modules are defined in entirely categorical terms, the general
theory includes a theory of coalgebras and comodules as a special case — one
just has to replace the base category by its opposite to switch from algebras to
coalgebras. In the following we will spell out some facts of such a generalized
coalgebra theory, which shall be used freely in the paper. We will not repeat the
definition of coalgebra and comodule, dual to those of algebra and module. We
denote the category of left (right) C-comodules in C by CC and CC , respectively. If
C is a coalgebra, M a right C-comodule, and X any object of C, then X ⊗M is a
C-comodule with comodule structure

X ⊗M X⊗ρ−−−→ X ⊗ (M ⊗ C) Φ−1

−−→ (X ⊗M)⊗ C,

where ρ is the comodule structure of M . As a special case, X ⊗ C is a right
C-comodule, and actually the cofree right C-comodule over X , in the sense that
we have a bijection C(M,X) 3 f 7→ (f ⊗ C)ρ ∈ CC(M,X ⊗ C) with inverse
F 7→ (X ⊗ ε)F , so that the functor C 3 X 7→ X ⊗ C ∈ CC is right adjoint to the
underlying functor CC → C. In particular, the morphism p : X ⊗ ε : X ⊗ C → X
satisfies (p⊗ C)ρX⊗C = idX⊗C . We note for later use that, if Y is another object
of C, the C-comodule structure ρ of Y ⊗ (X ⊗ C) satisfies(

Y ⊗ (X ⊗ C)
ρ−→ (Y ⊗ (X ⊗ C))⊗ C ε3−→ (Y ⊗X)⊗ C

)
= Φ−1,(2.2)

where ε3 := (Y ⊗ (X ⊗ ε))⊗ C, simply since this is trivial if C is strict.
A C-D-bicomodule for coalgebras C,D in C is an object M with morphisms

λ : M → C ⊗M and ρ : M →M ⊗D making it a left and right comodule, respec-
tively, and satisfying

(C ⊗ ρ)λ = Φ(λ⊗D)ρ : M → C ⊗ (M ⊗D).

We denote the category of C-D-bicomodules in C by CCD. If M ∈ CC and N ∈ CD,
then M ⊗N ∈ CCD with the right D-comodule structure as introduced above, and
the analogous left C-comodule structure. In particular, if X ∈ CC, then the cofree
right D-comodule over X is a C-D-bicomodule; thus we have a right adjoint to the
underlying functor CCD → CC.

Assume from now on that the category C has equalizers, and that the tensor
product in C preserves equalizers in each variable. By definition the cotensor prod-
uct of M ∈ CC and N ∈ CC is defined as the equalizer

M �C N // M ⊗N
ρ⊗N

//

Φ−1(M⊗λ)
// (M ⊗ C)⊗N .

If M ∈ BCC and N ∈ CCD, then M �C N ∈ BCD as a sub-bicomodule of M ⊗N .
In particular, the category CCC is a monoidal category with respect to �C ; the
associators are induced by the associators in C.

If M = X ⊗C is the cofree right C-comodule over X , then we have M �C N ∼=
X ⊗N , with the isomorphism induced by (M ⊗ ε)⊗N , and its inverse induced by

X ⊗N X⊗λ−−−→ X ⊗ (C ⊗N) Φ−1

−−→ (X ⊗ C)⊗N.
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2.3. Quasi-Hopf algebras. A quasibialgebra H = (H,∆, ε, φ) consists of an al-
gebra H , algebra maps ∆: H → H ⊗H and ε : H → k, and an invertible element
φ ∈ H⊗3, the associator, such that

(ε⊗H)∆(h) = h = (H ⊗ ε)∆(h),(2.3)

(H ⊗∆)∆(h) · φ = φ · (∆⊗H)∆(h),(2.4)

(H ⊗H ⊗∆)(φ) · (∆⊗H ⊗H)(φ) = (1 ⊗ φ) · (H ⊗∆⊗H)(φ) · (φ⊗ 1),(2.5)

(H ⊗ ε⊗H)(φ) = 1(2.6)

hold for all h ∈ H , the equations being in H , H ⊗ H ⊗ H , H⊗4, and H⊗2, re-
spectively. It follows that also (ε ⊗ H ⊗ H)(φ) = 1 = (H ⊗ H ⊗ ε)(φ). We will
write ∆(h) =: h(1) ⊗ h(2), φ = φ(1) ⊗ φ(2) ⊗ φ(3), and φ−1 = φ(−1) ⊗ φ(−2) ⊗ φ(−3).
When there is need to perform computations with several copies of φ, we write
φ = φ̃(1) ⊗ φ̃(2) ⊗ φ̃(3) for a second copy of φ, and so forth. We will adopt a similar
notation for the tensor factors of other elements of tensor products.

If H is a quasibialgebra, then the category HM of left H-modules is a monoidal
category in the following way: For V,W ∈ HM the tensor product V ⊗W is an H-
module by h(v⊗w) = h(1)v⊗h(2)w; this defines a bifunctor ⊗ : HM×HM→ HM.
The base ring k is an H-module via ε. Then the canonical morphisms V ∼= V ⊗k ∼=
k ⊗ V are H-linear for V ∈ HM. The map

Φ: (U ⊗ V )⊗W 3 u⊗ v ⊗ w 7→ φ(1)u⊗ φ(2)v ⊗ φ(3)w ∈ U ⊗ (V ⊗W )

is H-linear as a consequence of (2.4), and makes Mac Lane’s pentagon commute as
a consequence of (2.5).

The monoidal category structure on HM is defined in such a way that the un-
derlying functor U : HM→Mk preserves tensor products and the unit object; that
is, so that the underlying functor is a strict incoherent tensor functor. Conversely,
if H is an algebra such that HM is a monoidal category, and the underlying func-
tor U : HM → Mk is a strict incoherent tensor functor, then there is a unique
quasibialgebra structure on H inducing the given monoidal category structure on
HM.

If (H,φ) is a quasibialgebra, so is (Hop, φ−1), and if (B,ψ) is another quasibi-
algebra, then H ⊗B is a quasibialgebra with associator φ(1) ⊗ ψ(1) ⊗ φ(2) ⊗ ψ(2) ⊗
φ(3) ⊗ ψ(3).

A quasiantipode (S, α, β) for a quasibialgebra H consists of an algebra antiau-
tomorphism S of H , and elements α, β ∈ H , such that

S(h(1))αh(2) = ε(h)α, h(1)βS(h(2)) = ε(h)β,

φ(1)βS(φ(2))αφ(3) = 1, S(φ(−1))αφ(−2)βφ(−3) = 1

hold in H , for h ∈ H . A quasi-Hopf algebra is a quasibialgebra with a quasi-
antipode.

If V is a finite-dimensional module over a quasi-Hopf algebraH , then V has a left
dual V ∨, defined to be its vector space dual V ∗ equipped with the module structure
defined by 〈hκ, v〉 = 〈κ, S(h)v〉, and the evaluation and coevaluation defined by
ev(κ⊗ v) = 〈κ, αv〉 and db(1k) = βvi ⊗ vi, where vi ⊗ vi ∈ V ⊗ V ∗ is the canonical
element. (Here and below we use Einstein’s summation convention for a repeated
lower and upper index.) In particular, the category HMf of finite-dimensional left
H-modules is left and right rigid. Note that dual modules are defined in such a way
that the underlying functor U : HMf →Mk preserves duals in the sense that one
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has a natural isomorphism U(V ∨) ∼= U(V )∗ (albeit incompatible with evaluation
and coevaluation).

Conversely, if H is a finite-dimensional quasibialgebra, the category HMf is left
and right rigid, and the underlying functor toMk preserves duals in the sense that
there exists a natural isomorphism U(V ∨) ∼= U(V )∗, then H has a quasiantipode.
See [9] for a proof, but also see [14] for an example indicating that the additional
hypothesis on U can perhaps not be dispensed with.

We shall be needing some of the elaborate formulas for the associator and the
antipode of a quasi-Hopf algebra developed in [2]. For the rest of this section, fix a
quasi-Hopf algebra H .

First, we have an isomorphism

θ := θA : A⊗H 3 a⊗ h 7→ aφ(1)βS(h(1)φ
(2))⊗ h(2)φ

(3) ∈ A⊗H
for all A ∈ MH , with inverse

θ−1(a⊗ h) = aS(φ(−1))αφ(−2)h(1) ⊗ φ(−3)h(2),

slightly generalizing [2, Prop. 1.5], where it is shown that θH (in Drinfeld’s notation
ϕ−1) is bijective with the claimed inverse. But since θ is obviously natural in A,
the general case follows.

Further we need the twist f that Drinfeld obtains to replace the fact that the an-
tipode of an ordinary Hopf algebra is a coalgebra antimorphism. Following Drinfeld
we set

δ := φ(−1)βS(φ(−3)
(2)φ

(3))⊗ φ(−2)φ(1)βS(φ(−3)
(1)φ

(2)),

γ := S(φ(−1)φ(2))αφ(−2)φ(3)
(1) ⊗ S(φ(1))αφ(−3)φ(3)

(2),

f := S(φ(−1)
(2))γ(1)(φ(−2)βφ(−3))(1) ⊗ S(φ(−1)

(1))γ(2)(φ(−2)βφ(3))(2)

with the consequence that

∆(S(h)) = f−1 · (S ⊗ S)∆cop(h) · f and δf = ∆(β).

The “meaning” of f is that it induces, for V,W ∈ HMf , the isomorphism D : W∨⊗
V ∨ → (V ⊗W )∨ from (2.1); more precisely, if we identify (V ⊗W )∨ with V ∗⊗W ∗
as a vector space, then D is the transpose of the map F : V ⊗W → W ⊗ V given
by F(v ⊗ w) = f(2)w ⊗ f(1)v.

3. Hopf modules and the structure theorem

Throughout this section H is a quasibialgebra with associator φ. If H is an
ordinary bialgebra, we have the well-known notion of a Hopf module, which is an
important tool in Hopf algebra theory, cf. [15]. An H-Hopf module is by defi-
nition an H-module (right or left) and H-comodule (right or left) such that the
comodule structure is a module map, or, equivalently, the module structure is a
comodule map. That is, a Hopf module is an H-module in the category of H-
comodules, or, equivalently, an H-comodule in the category of H-modules. Now
in the quasibialgebra case, none of this makes sense: We do not have a notion of
(ordinary) H-comodule, and we do not have a notion of H-comodule in the cate-
gory of H-modules either, since H is not a coalgebra in the category of H-modules.
However, as Hausser and Nill [5] have observed, and used to establish integral
theory for quasi-Hopf algebras along the lines of the integral theory for ordinary
Hopf algebras, there is a well-behaved notion of Hopf module in HMH

H . Note first
that since H is a quasibialgebra, so is Hop, and hence H ⊗ Hop, with associator
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φ(1) ⊗ φ(−1) ⊗ φ(2) ⊗ φ(−2) ⊗ φ(3) ⊗ φ(−3). If we identify H ⊗ Hop-modules with
H-H-bimodules, this means that HMH is a monoidal category with associator

Φ: (P ⊗Q)⊗R 3 p⊗ q ⊗ r
7→ φ(1)pφ(−1) ⊗ φ(2)qφ(−2) ⊗ φ(3)rφ(−3) ∈ P ⊗ (Q⊗R)

for P,Q,R ∈ HMH . We note that if one of P,Q,R has the trivial right module
structure, then Φ reduces to left multiplication by φ, if one of P,Q,R has the trivial
left module structure, then Φ reduces to right multiplication by φ−1, and if one of
the three has the trivial left, and another the trivial right module structure, then
Φ is the identity.

Observe that H , with the regular H-bimodule structure, is a coassociative coal-
gebra in the monoidal category HMH .

Definition 3.1. A Hopf module in HMH
H is a right H-comodule in the monoidal

category HMH . A Hopf module in H
HMH

H is an H-H-bicomodule in HMH .

We will freely apply the facts on comodule theory in monoidal categories to
this special case. In particular, H ∈ H

HMH
H in a natural way, and if P ∈ HMH

and M ∈ HMH
H , then P ⊗M ∈ HMH

H with the diagonal left and right module
structures, and the right comodule structure ρ(p⊗m) = φ(−1)pφ(1)⊗φ(−2)m(0)φ

(2)⊗
φ(−3)m(1)φ

(−3). We shall always use this structure without further notice. When
M ∈ HMH

H , we denote by M0 the H-bimodule M , with the trivial H-comodule
structure.

Like the definition of Hopf modules, the following lemma is due to Hausser and
Nill [5], at least as far as HMH

H is concerned.

Lemma and Definition 3.2. The categories HMH
H and H

HMH
H are monoidal cat-

egories in such a way that the underlying functors to the category (HMH ,⊗H) are
strictly monoidal functors.

In particular, the tensor product of two Hopf modules M,N is modelled on their
tensor product over H. The right and, if applicable, left H-comodule structures on
M ⊗H N are given by

(m⊗ n)(0) ⊗ (m⊗ n)(1) = m(0) ⊗ n(0) ⊗m(1)n(1),

(m⊗ n)(−1) ⊗ (m⊗ n)(0) = m(−1)n(−1) ⊗m(0) ⊗ n(0),

and the right (and left) comodule structures of H are given by comultiplication.

Proof. The claimed comodule structures are trivially well-defined. To see that the
right coaction ρ on M ⊗H N is in fact a comodule structure in the bimodule
category, one has to compute

(M ⊗∆)ρ(m⊗ n) · φ = (m⊗ n)(0)φ
(1) ⊗ (m⊗ n)(1)(1)φ

(2) ⊗ (m⊗ n)(1)(2)φ
(3)

= (m(0) ⊗ n(0))φ(1) ⊗ (m(1)n(1))(1)φ
(2) ⊗ (m(1)n(1))(2)φ

(3)

= m(0) ⊗ n(0)φ
(1) ⊗m(1)(1)n(1)(1)φ

(2) ⊗m(1)(2)n(1)(2)φ
(3)

= m(0) ⊗ φ(1)n(0)(0) ⊗m(1)(1)φ
(2)n(0)(1) ⊗m(1)(2)φ

(3)n(1)

= m(0)φ
(1) ⊗ n(0)(0) ⊗m(1)(1)φ

(2)n(0)(1) ⊗m(1)(2)φ
(3)n(1)

= φ(1)m(0)(0) ⊗ n(0)(0) ⊗ φ(2)m(0)(1)n(0)(1) ⊗ φ(3)m(1)n(1)

= φ · (ρ⊗H)ρ(m⊗ n).
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The computations showing that M ⊗H N is, if applicable, also a left H-comodule,
and an H-H-bicomodule in the bimodule category, are similar. It is trivial to verify
that the coherence isomorphisms from HMH are morphisms in the respective Hopf
module category.

Note that the monoidal category structure of the Hopf module is not derived
from general categorical reasons, but rather requires an explicit, albeit rather trivial,
computation. To get it from purely categorical considerations would perhaps require
a closer analysis of the interplay between the two monoidal category structures on
HMH . On the other hand, the following monoidal category structure on H

HMH
H is

an entirely categorical fact:

Remark 3.3. The category H
HMH

H is a monoidal category with tensor product the
cotensor product of comodules within the monoidal category HMH .

Explicitly, this means that M �H N ⊂ M ⊗ N consists of all those elements∑
mi ⊗ ni ∈M ⊗N that satisfy∑

φ(1)mi(0) ⊗ φ(2)mi(1) ⊗ φ(3)ni =
∑

miφ
(1) ⊗ ni(−1)φ

(2) ⊗ ni(0)φ
(3),

and the associator isomorphisms

(L �
H
M) �

H
N ∼= L �

H
(M �

H
N)

are induced by the associator Φ in HMH .
Although this second monoidal category structure looks quite different from the

one in Definition 3.2, it will turn out to be isomorphic provided that H is a quasi-
Hopf algebra.

We will now take the first steps towards proving Hausser and Nill’s structure
theorem for Hopf modules in HMH

H . We will study the functor R : HM→ HMH
H

assigning to V ∈ HM the cofree right H-comodule V ⊗H over V in HMH .

Lemma 3.4. Let H be a quasibialgebra, M ∈ HMH
H , and V ∈ HM. Then the

canonical isomorphism (V ⊗H) ⊗H M ∼= V ⊗M is an isomorphism in HMH
H.

Proof. The canonical isomorphism ξ̂ : (V ⊗H) ⊗H M → V ⊗M with ξ̂−1(v⊗m) =
(v ⊗ 1)⊗m is trivially checked to be an isomorphism of H-bimodules. To see that
it is colinear, we compute

ρξ̂−1(v ⊗m) = ρ(v ⊗ 1⊗m) = (v ⊗ 1)(0) ⊗m(0) ⊗ (v ⊗ 1)(1)m(1)

= φ(1)v ⊗ φ(2) ⊗m(0) ⊗ φ(3)m(1) = φ(1)v ⊗ 1⊗ φ(2)m(0) ⊗ φ(3)m(1)

= ξ̂−1(φ(1)v ⊗ φ(2)m(0))⊗ φ(3)m(1) = (ξ̂−1 ⊗H)ρ(v ⊗m)

for v ∈ V and m ∈M .

Definition 3.5. For V,W ∈ HM we define

ξ := ξVW :=
(

(V ⊗H) ⊗
H

(W ⊗H)
ξ̂−→ V ⊗ (W ⊗H) Φ−1

−−→ (V ⊗W )⊗H
)
,

so that, for all v ∈ V , w ∈W , and g, h ∈ H ,

ξ((v ⊗ g)⊗ (w ⊗ h)) = φ(−1)v ⊗ φ(−2)g(1)w ⊗ φ(−3)g(2)h,

ξ−1(v ⊗ w ⊗ h) = (φ(1)v ⊗ 1)⊗ (φ(2)w ⊗ φ(3)h).
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Proposition 3.6. Let H be a quasibialgebra. The isomorphisms ξ define a mon-
oidal functor structure on

R : HM 3 V 7→ V ⊗H ∈ HMH
H .

The functor R is fully faithful and exact.

Proof. It is trivial that R is faithful and exact. To see that it is full, we compute

(HMH)H (V ⊗H,W ⊗H) ∼= HMH(V ⊗H,W ) ∼= HomH−(V,W ),

where the first isomorphism is the property of W ⊗H of being the cofree right H-
comodule generated by W within the category HMH , and the second is induced by
the canonical bijection T : Hom−H(V ⊗H,W ) ∼= Hom(V,W ): The latter is given
by T (F )(v) = F (v ⊗ 1) and T−1(f)(v ⊗ h) = f(v)ε(h). Thus if f = T (F ), and f
is left H-linear, then so is F , since F (g(v ⊗ h)) = F (g(1)v ⊗ g(2)h) = f(gv)ε(h) =
gf(v)ε(h) = gF (v⊗h), and conversely, if F is H-linear, then trivially so is f . Note
that the composed isomorphism HMH

H(V ⊗H,W ⊗H) ∼= HomH−(V,W ), inverse
to the morphism map of the functor R, is given by F 7→ (W ⊗ ε)F (V ⊗ η).

It remains to check that R is monoidal, that is, that ξ is coherent. This asks for
the diagrams

((U ⊗ V )⊗W )⊗H

Φ⊗H

��

ξ−1
// ((U ⊗ V )⊗H) ⊗H (W ⊗H)

id⊗Hξ−1

��

(U ⊗H) ⊗H (V ⊗H) ⊗H (W ⊗H)

(U ⊗ (V ⊗W ))⊗H ξ−1
// (U ⊗H) ⊗H ((V ⊗W )⊗H)

ξ−1⊗H id

OO

to commute for all U, V,W ∈ HM. But upon closer inspection, this turns out to
be precisely the pentagon axiom for Φ: By definition of ξ−1, the diagrams

(X ⊗ Y )⊗H ξ−1
//

Φ
))SSSSSSSSSSSSSS

(X ⊗H) ⊗H (Y ⊗H)

X ⊗ (Y ⊗H)

commute for all X,Y ∈ HM. This immediately identifies all except the bottom
right vertical arrow in the above pentagon with the arrows in the coherence penta-
gon. For that last arrow we claim that the diagram

(U ⊗H) ⊗H (V ⊗H) ⊗H (W ⊗H) U ⊗ (V ⊗ (W ⊗H))

((U ⊗ V )⊗H) ⊗H (W ⊗H)

ξ−1⊗id

OO

(U ⊗ V )⊗ (W ⊗H)

ΦU,V,W⊗H

OO
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commutes as well, which can be checked by a short calculation, or by generalizing
to the diagram

(U ⊗H) ⊗H (V ⊗H) ⊗H M U ⊗ (V ⊗M)

((U ⊗ V )⊗H) ⊗H M

ξ−1⊗id

OO

(U ⊗ V )⊗M

ΦU,V,M

OO

for any M ∈ HM, which commutes since it is natural in M , and commutes for
M = H .

Hausser and Nill [5] have shown that R is an equivalence if H is a quasi-Hopf
algebra (see Theorem 3.10 below), and that its quasi-inverse is monoidal, which
implies that R is monoidal. Proving directly that R is monoidal, without using a
quasiantipode, will allow us to draw some conclusions on the fundamental question
of when a (finite-dimensional) quasibialgebra H is a quasi-Hopf algebra. In [14]
we have given an example of a coquasibialgebra H whose finite comodule category
is left and right rigid, but which is not a coquasi-Hopf algebra. In fact the dual
object of a finite comodule V need not have the same dimension as V . The next
corollary shows that this rather strange phenomenon cannot occur when H is finite
dimensional.

Corollary 3.7. Let H be a finite-dimensional quasibialgebra. Assume that the
category HMf of finite-dimensional left H-modules is rigid. Then dim(V ∨) =
dim(V ) for all V ∈ HMf , where V ∨ denotes the left dual of V in HMf .

In particular, if H is semisimple as an algebra, and HMf is left and right rigid,
then H is a quasi-Hopf algebra.

Proof. Since the functor R from Proposition 3.6 is monoidal, so is its composition
with the underlying functor HMH

H → HMH . We use the fact that monoidal
functors preserve duals. If V ∈ HMf , then the left dual of V ⊗H in HMH is

Hom−H(V ⊗H,H) ∼= Hom(V,H) ∼= V ∗ ⊗H ;

so it follows that dim(V ∨ ⊗H) = dim(V ∗ ⊗H), and hence dim(V ∨) = dim(V ∗) =
dim(V ).

To conclude that H is a quasi-Hopf algebra, we need to know that the underlying
functor HMf → Mk preserves duals; that is, we need an isomorphism V ∨ ∼= V ∗

of vector spaces, natural in V ∈ HMf . But if H is semisimple, it suffices to
fix any vector space isomorphism V ∨ ∼= V ∗ for one representative V out of each
isomorphism class of simple modules.

Note that we have to leave the following question open: If H is a finite-dimen-
sional quasibialgebra such that the category HMf is left and right rigid, does it
follow that H is a quasi-Hopf algebra?

The structure theorem, Theorem 3.10, asserts that every M ∈ HMH
H has the

form V ⊗H for some V ∈ HM. We will now show this in the special case when
M = P ⊗H for some P ∈ HMH , by finding the suitable V explicitly.

Definition 3.8. Let H be a quasi-Hopf algebra with quasiantipode (S, α, β). We
define the functor ad(–) : HMH → HM to map P to adP := P as k-module, with
the adjoint left H-module structure defined by h · p := h(1)pS(h(2)). Further we
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define, for P ∈ HMH , the map πP : P ⊗H → adP by πP (p ⊗ h) := pβS(h), and
we define

τP :=
(
P ⊗H P⊗∆−−−→ P ⊗ (H0 ⊗H) Φ−1

−−→ (P ⊗H0)⊗H πP⊗H−−−−→ adP ⊗H
)

Proposition 3.9. With the notations of Definition 3.8, πP is an H-bimodule ho-
momorphism, where adP has the trivial right H-module structure, and τP is an
isomorphism in the category HMH

H. Both π and τ are natural in P ∈ HMH . We
have (adP ⊗ ε)τP = πP .

Proof. It is quite trivial to check that π is a bimodule map as stated, and from the
way we defined τ it is evident that τ is a morphism in HMH

H . Of course π and τ
are natural, and the last equality is immediately verified. The least trivial part is
bijectivity of τ . Now explicitly

τP (p⊗ h) = φ(−1)pφ(1)βS(φ(−2)h(1)φ
(2))⊗ φ(−3)h(2)φ

(3)

= Γ(pφ(1)βS(h(1)φ
(2))⊗ h(2)φ

(3)) = ΓθP (p⊗ h),

where θP uses only the right H-module P , and we have written Γ(p ⊗ h) =
φ(−1)pS(φ(−2)) ⊗ φ(−3)h. It remains to note that Γ: P ⊗H → P ⊗H , essentially
multiplication by φ−1, is evidently an isomorphism.

In fact we can go ahead and read off the inverse of τ :

τ−1
P (p⊗ h) = θ−1

P Γ−1(p⊗ h) = θ−1
P (φ(1)pS(φ(2))⊗ φ(3)h

= φ(1)pS(φ(2))S(φ(−1))αφ(−2)(φ(3)h)(1) ⊗ φ(−3)(φ(3)h)(2).

Theorem 3.10. Let H be a quasi-Hopf algebra. Then the functor R : HM →
HMH

H from Proposition 3.6 is a category equivalence.

Proof. We have seen in Proposition 3.6 that R is fully faithful, so it remains to
prove that R is essentially surjective. So let M ∈ HMH

H . Then M ∼= M �H H ,
where the cotensor product is to be taken within the category HMH . In other
words, we have an equalizer

M
ρ

// M0 ⊗H
ρ⊗H

//

Φ−1(M⊗∆)
// (M0 ⊗H0)⊗H

in HMH
H . Now by Proposition 3.9, both objects M0 ⊗H and (M0 ⊗H0)⊗H are

in the image of R, and since R is full, the parallel arrows are also in the image.
Further R is exact, and it follows that M , the equalizer of the image under R of a
pair of parallel arrows, is also in the image of R.

As a consequence of the structure theorem, we can now show that the two
monoidal category structures on H

HMH
H given at the beginning of the section are

essentially the same. The relevant isomorphism actually looks completely the same
as that obtained for the ordinary Hopf case in [13], although the details are more
involved here.

Proposition 3.11. The identity on the category H
HMH

H is a monoidal functor

(HHMH
H ,Ξ): (HHMH

H ,�
H

)→ (HHMH
H ,⊗

H
)
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where the monoidal functor structure Ξ is defined by

Ξ := ΞMN : M ⊗
H
N 3 m⊗ n 7→ m(0)n(−1) ⊗m(1)n(0) ∈M �

H
N.

Proof. We shall omit checking that Ξ is well-defined, an H-bimodule map, and an
H-bicomodule map in the bimodule category. To verify that Ξ is an isomorphism,
it suffices, by Theorem 3.10, to consider the case where M = V ⊗H in HMH

H for
some V ∈ HM. We have to show that the composition

V ⊗N → (V ⊗H) ⊗
H
N

Ξ−→ (V ⊗H) �
H
N → V ⊗N

is an isomorphism, where the first and last arrows are the canonical isomorphisms.
But since V ⊗ ε : V ⊗H → V is a right H-module map, with respect to the trivial
right H-module structure on V , and since (V ⊗ ε)((v ⊗ 1)(0))⊗ (v ⊗ 1)(1) = v ⊗ 1,
this composition is simply the identity. It remains to check that Ξ is coherent; that
is to say, the diagrams

(L ⊗H M) ⊗H N
Ξ⊗N

// (L �H M) ⊗H N
Ξ // (L �H M) �H N

Φ

��

L ⊗H (M ⊗H N)
L⊗HΞ

// L ⊗H (M �H N) Ξ // L �H (M �H N)

commute for all L,M,N ∈ H
HMH

H . We compute

ΦΞ(Ξ ⊗N)(`⊗m⊗ n)

= ΦΞ(`(0)m(−1) ⊗ `(1)m(0) ⊗ n)

= Φ((`(0)m(−1) ⊗ `(1)m(0))(0)n(−1) ⊗ (`(0)m(−1) ⊗ `(1)m(0))(1)n(0))

= Φ((φ(−1)`(0)m(−1)φ
(1) ⊗ φ(−2)(`(1)m(0))(0)φ

(2))n(−1)

⊗ φ(−3)(`(1)m(0))(1)φ
(3)n(0))

= Φ(φ(−1)`(0)m(−1)φ
(1)n(−1)(1) ⊗ φ(−2)`(1)(1)m(0)(0)φ

(2)n(−1)(2)

⊗ φ(−3)`(1)(2)m(0)(1)φ
(3)n(0))

= `(0)m(−1)φ
(1)n(−1)(1)φ

(−1) ⊗ `(1)(1)m(0)(0)φ
(2)n(−1)(2)φ

(−2)

⊗ `(1)(2)m(0)(1)φ
(3)n(0)φ

(−3)

= `(0)m(−1)n(−1) ⊗ `(1)(1)m(0)(0)n(0)(−1) ⊗ `(1)(2)m(0)(1)n(0)(0)

= `(0)m(−1)n(−1) ⊗ `(1)Ξ(m(0) ⊗ n(0))

= Ξ(`⊗ Ξ(m⊗ n)).

4. A category action

This section is about an action of the category HMH on the category HM. For
each P ∈ HMH and V ∈ HM, there is a tensor product P♦V ∈ HM; in this way,
the category HM is an HMH -category in the sense of [12], which means that there
is a certain modified associativity for ♦. The ‘reason’ for the action is the natural
action of HMH on HMH

H , sending P ∈ HMH and M ∈ HMH
H to P ⊗M ∈ HMH

H .
Actually, we shall not pursue the topic of C-categories in the present paper, but
only study the relevant natural isomorphisms, and discuss the terminology at most
in passing.
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Definition 4.1. Let H be a quasi-Hopf algebra. For P ∈ HMH and V ∈ HM we
define P♦V := ad(P ⊗ V ), and

ζ := ζPV :=
(
P ⊗ (V ⊗H) Φ−1

−−→ (P ⊗ V )⊗H τP⊗V−−−→ ad(P ⊗ V )⊗H
)
.

For P,Q ∈ HMH and V ∈ HM we denote by

Ω: (P ⊗Q)♦V → P♦(Q♦V )

the unique H-module map making the diagram

(P ⊗Q)⊗ (V ⊗H) Φ //

ζ

��

P ⊗ (Q⊗ (V ⊗H))

P⊗ζ
��

P ⊗ (ad(Q⊗ V )⊗H)

ζ

��

ad((P ⊗Q)⊗ V )⊗H Ω⊗H
//
ad(P ⊗ ad(Q⊗ V ))⊗H

commute.

Remark 4.2. Since Ω: (P ⊗ Q)♦V → P♦(Q♦V ) is a natural transformation, it
has the form Ω(p ⊗ q ⊗ v) = ω(1)pω(5) ⊗ ω(2)qω(4) ⊗ ω(3)v for some element ω =
ω(1) ⊗ . . .⊗ ω(5) ∈ H⊗5.

It is easy to check that Ω is the identity whenever P or Q is the trivial H-
bimodule. This implies

(ε⊗H ⊗H ⊗H ⊗ ε)(ω) = 1 = (H ⊗ ε⊗H ⊗ ε⊗H)(ω)(4.1)

in H ⊗H ⊗H .

In a sense, the remark contains all we need to know about Ω when it enters below
in a central rôle in the definition of Yetter-Drinfeld modules, and in the construction
of the Drinfeld double. Moreover, ζ and its inverse are known explicitly, since τ
and its inverse are. Thus the definition of Ω above is also by an explicit formula,
and hence the element ω is, at least in principle, given explicitly. However, chasing
an element around the defining diagram of Ω is far from pleasant, and thus we will
be occupied for some time with deriving a manageable formula for ω.

We start by investigating some special cases of the functor ad(–). For V ∈ HM
we trivially have adV = V . If A ∈ MH , then adA =: SA, with the left H-module
structure defined by h · a = aS(h). If also B ∈ MH , we have an isomorphism
F : SB ⊗ SA → S(A⊗B) given by F(b ⊗ a) = τ((b ⊗ a)f) = af(2) ⊗ bf(1), with
the element f ∈ H ⊗H given in Section 2.3. Note further that for V ∈ HM and
A ∈ MH we have ad(V ⊗A) ∼= ad(A⊗ V ) ∼= V ⊗ SA by the natural vector space
isomorphisms. The map Ψ in the following definition generalizes F−1.

Definition 4.3. For P,Q ∈ HMH we define Ψ: ad(P ⊗Q) → ad(P ⊗ adQ) to be
the unique H-module map making

P ⊗ (Q⊗H) Φ−1
//

P⊗τ
��

(P ⊗Q)⊗H τ //
ad(P ⊗Q)⊗H

Ψ⊗H
��

P ⊗ (adQ⊗H) Φ−1
// (P ⊗ adQ)⊗H τ //

ad(P ⊗ adQ)⊗H
commute.
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Lemma 4.4. In the notations of Definition 4.3 we have Ψ(p ⊗ q) = ψ(1)pψ(4) ⊗
ψ(2)qψ(3) for all p ∈ P and q ∈ Q, with

ψ = (1⊗ 1⊗ τ(f−1)) · (H ⊗H ⊗ S ⊗ S)(χ) ∈ H⊗4,

where τ denotes the flip of tensor factors in H ⊗H, and

χ = (H ⊗∆⊗H)(φ−1) · (1 ⊗ φ−1) · (H ⊗H ⊗∆)(φ)

= (φ⊗ 1) · (∆⊗H ⊗H)(φ).

Proof. Forgetting Definition 4.3 for a moment, we can define a k-linear endomor-
phism Ψ of P ⊗ Q by the formulas in the lemma. Of course Ψ is natural in
P,Q ∈ HMH . To prove that Ψ: ad(P ⊗Q) → ad(P ⊗ adQ) is an H-module map,
it suffices to treat the case where P = V ⊗ A, Q = W ⊗ B with V,W ∈ HM and
A,B ∈MH . (In fact every P ∈ HMH is a quotient of a direct sum of copies of the
H-bimodule H⊗H ; so it would be sufficient, but confusing, to assume V = W = H
as left and A = B = H as right modules.) In this case

ad(P ⊗Q) ∼= (V ⊗W )⊗ S(A⊗B),

and

ad(P ⊗ ad(Q)) ∼= ad(P ⊗ (W ⊗ SB)) ∼= (V ⊗ (W ⊗ SB))⊗ SA,

and with these identifications, Ψ is the composition of (V ⊗W ) ⊗ F−1 with the
associativity isomorphism (V ⊗W )⊗ (SB⊗ SA)→ (V ⊗ (W ⊗ SB))⊗ SA. Now we
need to check that the diagram in Definition 4.3 commutes. Since Ψ is H-linear,
all the maps in the diagram are right H-comodule maps in HMH , so it suffices to
verify that the diagram commutes after composing with

P ⊗Q⊗ ε : ad(P ⊗ adQ)⊗H → ad(P ⊗ adQ),

when it becomes

P ⊗ (Q⊗H) Φ−1
//

P⊗τ
��

(P ⊗Q)⊗H π //
ad(P ⊗Q)

Ψ

��

P ⊗ (adQ⊗H) Φ−1
// (P ⊗ adQ)⊗H π //

ad(P ⊗ adQ).

After the auxiliary calculation

πP⊗Q(pφ(1) ⊗ qφ(2) ⊗ hφ(3))

= pφ(1)β(1)S(hφ(3))(1) ⊗ qφ(2)β(2)S(hφ(3))(2)

= pφ(1)β(1)f(−1)S(h(2)φ
(3)

(2))f(1) ⊗ qφ(2)β(2)f(−2)S(h(1)φ
(3)

(1))f(2)

= pφ(1)δ(1)S(h(2)φ
(3)

(2))f(1) ⊗ qφ(2)δ(2)S(h(1)φ
(2)

(1))f(2)

= pβS(h(2)φ
(3))f(1) ⊗ qφ(1)βS(h(1)φ

(2))f(2)

that utilizes the definition of δ and its relations to f from Section 2.3, we obtain

ΨπP⊗QΦ−1
PQH(p⊗ q ⊗ h)

= ΨπP⊗Q(φ(−1)pφ(1) ⊗ φ(−2)qφ(2) ⊗ φ(−3)hφ(3))

= Ψ(φ(−1)pβS(φ(−3)
(2)h(2)φ

(3))f(1) ⊗ φ(−2)qφ(1)βS(φ(−3)
(1)h(1)φ

(2))f(2))

= χ(1)φ(−1)pβS(χ(4)φ(−3)
(2)h(2)φ

(3))⊗ χ(2)φ(−2)qφ(1)βS(χ(3)φ(−3)
(1)h(1)φ

(2)),
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which is the same as

πP⊗adQΦ−1
P,adQ,H

(P ⊗ τ)(p⊗ q ⊗ h)

= πP⊗adQΦ−1
P,adQ,H

(p⊗ φ(−1)qφ(1)βS(φ(−2)h(1)φ
(2))⊗ φ(−3)h(2)φ

(3))

= πP⊗adQ(φ̃(−1)p⊗ φ̃(−2)
(1)qφ

(1)βS(φ̃(−2)
(2)φ

(−2)h(1)φ
(2))⊗ φ̃(−3)φ(−3)h(2)φ

(3))

= φ̃(−1)pβS(φ̃(−3)φ(−3)h(2)φ
(3))⊗ φ̃(−2)

(1)qφ
(1)βS(φ̃(−2)

(2)φ
(−2)h(1)φ

(2))

by the definition of χ.

Corollary 4.5. In the notations of Lemma 4.4 we have

ω = (1⊗ 1⊗ 1⊗ τ(f−1)) · (H ⊗∆⊗ S ⊗ S)(χ) · (φ⊗ 1⊗ 1).

Proof. Consider the diagram

(P ⊗Q)⊗ (V ⊗H) Φ //

Φ−1

��

P ⊗ (Q⊗ (V ⊗H)

P⊗Φ−1

��

((P ⊗Q)⊗ V )⊗H

τ

��

Φ⊗H

**UUUUUUUUUUUUUUUU
P ⊗ ((Q⊗ V )⊗H)

P⊗τ
��

(P ⊗ (Q⊗ V ))⊗H

Φ

44iiiiiiiiiiiiiiiii

τ

��

P ⊗ (ad(Q⊗ V )⊗H)

Φ−1

��

ad(P ⊗ (Q⊗ V ))⊗H
44

Φ⊗Hiiiiiiiiiiiiiiii

Ψ⊗H
**UUUUUUUUUUUUUUUUU

(P ⊗ ad(Q⊗ V ))⊗H

τ

��

ad((P ⊗Q)⊗ V )⊗H
Ω⊗H

//
ad(P ⊗ ad(Q⊗ V ))⊗H

Here the pentagon on top is Mac Lane’s pentagon, the quadrangle commutes by
naturality of τ , the hexagon is the definition of Ψ, and the outside commutes by
the definition of Ω. We conclude that ΩPQ = ΨP,Q⊗V ΦPQV .

5. Yetter-Drinfeld modules of the second kind

By the results of the previous section, HM is an HMH-category. Thus we
can talk about H-comodules in the category HM, where H is a coalgebra in the
category HMH . Since we did not elaborate on the theory of C-categories, we give
the definition explicitly:

Definition 5.1. A Yetter-Drinfeld module of the second kind is a left H-module
equipped with an H-module map λ′ : V → H♦V satisfying (ε ⊗ V )λ′ = idV , and
making

V
λ′ //

λ′

��

H♦V

∆♦V
��

(H ⊗H)♦V

Ω

��

H♦V H♦λ′
// H♦(H♦V )
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commute. We denote the category of Yetter-Drinfeld H-modules of the second kind
by H

HY2D.

Remark 5.2. Stated differently, a Yetter-Drinfeld H-module of the second kind is
a left H-module V with a k-linear map λ′ : V → H ⊗ V , λ′(v) =: v[−1] ⊗ v[0],
satisfying

(hv)[−1] ⊗ (hv)[0] = h(1)(1)v[−1]S(h(2))⊗ h(1)(2)v,

v[−1] ⊗ v[0][−1] ⊗ v[0][0] = ω(1)v[−1](1)ω
(5) ⊗ ω(2)v[−1](2)ω

(4) ⊗ ω(3)v[0],

and ε(v[−1])v[0] = v for all v ∈ V and h ∈ H . In particular, Yetter-Drinfeld modules
of the second kind specialize to ordinary Yetter-Drinfeld modules if H is an ordinary
Hopf algebra.

Since objects of HHMH
H are left H-comodules in the HMH -category HMH

H , which
is equivalent to the HMH -category HM, it follows that HHMH

H is equivalent to the
category H

HY2D of left H-comodules in HM. A more explicit statement and proof
follow below:

Theorem 5.3. Let H be a quasi-Hopf algebra, and V ∈ HM. Commutativity of
the diagram

V ⊗H Λ //

λ′⊗H ''OOOOOOOOOOOO H ⊗ (V ⊗H)

ζ

��

ad(H ⊗ V )⊗H

(5.1)

defines a bijection between maps Λ making V ⊗ H ∈ HMH
H an object in H

HMH
H ,

and maps λ′ making V ∈ HM a Yetter-Drinfeld module of the second kind. In par-
ticular, we have a category equivalence H

HY2D ∼= H
HMH

H induced by the equivalence
HM∼= HMH

H from Section 3.

Proof. Since the functor R is full by Proposition 3.6, we have a bijection between
maps Λ: V ⊗H → H0⊗(V ⊗H) in HMH

H , and H-module maps λ′ : V → ad(H ⊗ V ).
We shall omit checking that (ε ⊗ V )λ′ = id is equivalent to (ε ⊗ V ⊗ H)Λ = id.
Then Λ makes V ⊗ H an object in HMH

H if and only if the area marked by (∗)
in the following diagram commutes. The diagram commutes on the outside if and
only if λ′ makes V a Yetter-Drinfeld module of the second kind. Thus, if we check
that all the other parts of the diagram commute, we are done. Now all three
triangles are copies of (5.1), one of them tensored with H , and both quadran-
gles commute since ζ is natural. The remaining pentagon is the definition of Ω.
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V ⊗H λ′⊗H
//

λ

**UUUUUUUUUUUUUUUUUUU

Λ

��
(((((((((((((((((((((((((((((((((((((((

λ′⊗H

��

ad(H ⊗ V )⊗H

∆⊗V⊗H

��

H ⊗ (V ⊗H)

∆⊗V⊗H

��

ζ
66lllllllllllll

(∗) ad((H ⊗H)⊗ V )⊗H

Ω⊗H

��

(H ⊗H)⊗ (V ⊗H)

Φ

��

ζ

66lllllllllllll

H ⊗ (H ⊗ (V ⊗H))

H⊗ζ

��

H ⊗ (V ⊗H)

H⊗λ′⊗H
NNNN

&&NNNN

ζ

�������������������

H⊗Λ

88pppppppppp

H ⊗ (ad(H ⊗ V )⊗H)

ζ
((RRRRRRRRRRRRR

ad(H ⊗ V )⊗H
H⊗λ′⊗H

//
ad(H ⊗ ad(H ⊗ V ))⊗H

Example 5.4. For any P ∈ H
HMH (the category of left H-comodules in HMH)

we know that P ⊗H is an object of HHMH
H . One can check that the corresponding

coaction making adP a Yetter-Drinfeld module of the second kind is given by

adP
Λ0−→ ad(H ⊗ P ) Ψ−→ ad(H ⊗ adP ),

when Λ0 is the left H-comodule structure of P in HMH .
One can apply this in particular to P = H ∈ H

HMH (with the trivial right
comodule structure), to get a Yetter-Drinfeld module structure on adH , which is of
course well-known in the ordinary Hopf algebra case.

In the following sections we shall be constructing the quantum double essentially
from the situation we just established: We have a category HMH , which acts on
the category HM, and we have a coalgebra H in HMH . As we already indicated,
we will not pursue this axiomatic setup explicitly (in fact we did not even state the
coherence axioms for an HMH -category above), nor investigate other situations to
which it applies, but we hope to do so in a forthcoming paper.

6. The double as an algebra

Definition 6.1. Let H be a finite-dimensional quasi-Hopf algebra. We endow H∗

with the (nonassociative) multiplication dual to the comultiplication of H .
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The Drinfeld double of H is the k-module D(H) := H ⊗H∗ equipped with the
multiplication defined by

(g ./ ϕ)(h ./ ψ)

= gh(1)(2)ω
(3) ./ (ω(5) ⇀ ψ ↼ ω(1))(ω(4)S(h(2)) ⇀ ϕ ↼ h(1)(1)ω

(2))

for g, h ∈ H and ϕ, ψ ∈ H∗. Here and in the following we write h ./ ψ := h⊗ ψ ∈
D(H).

Remark 6.2. By (4.1) we have (g ./ ε)(h ./ ψ) = gh ./ ψ; in particular, the
embedding (H ⊗ ε∗) : H → D(H) is multiplicative, and 1 ./ ε is a left unit in
D(H). We also have (1 ./ ϕ)(h ./ ε) = h(1)(2) ./ S(h(2)) ⇀ ϕ ↼ h(1)(1); in
particular, 1 ./ ε is a right unit.

Theorem 6.3. The Drinfeld double D(H) of a finite-dimensional quasi-Hopf al-
gebra H is an associative algebra with unit 1⊗ ε.

An isomorphism of categories D(H)M∼= H
HY2D is given by assigning to a Yetter-

Drinfeld module V the left D(H)-module V with the module structure defined by

(h ./ ϕ)v = 〈ϕ, v[−1]〉hv[0].(6.1)

Proof. Put D := D(H), and 1 := 1D := 1⊗ε ∈ D. Although we do not know, as of
yet, that D is an associative algebra, we define the category DM of left D-modules
to consist of k-modules V with a map µ : D ⊗ V 3 d ⊗ v 7→ dv ∈ V satisfying
d(d′v) = (dd′)v for all d, d′ ∈ D and v ∈ V , as well as 1Dv = v.

If V ∈ H
HY2D, then V is in DM with the structure (6.1) by the calculation

(g ./ ϕ)((h ./ ψ)v)

= (g ./ ϕ)〈ψ, v[−1]〉hv[0]

= 〈ψ, v[−1]〉〈ϕ, (hv[0])[−1]〉g(hv[0])[0]

= 〈ψ, v[−1]〉〈ϕ, h(1)(1)v[0][−1]S(h(2))〉gh(1)(2)v[0][0]

= 〈ψ, ω(1)v[−1](1)ω
(5)〉〈ϕ, h(1)(1)ω

(2)v[−1](2)ω
(4)S(h(2))〉gh(1)(2)ω

(3)v[0]

= 〈ω(5) ⇀ ψ ↼ ω(1), v[−1](1)〉〈ω(4)S(h(2)) ⇀ ϕ ↼ h(1)(1)ω
(2), v[−1](2)〉

· gh(1)(2)ω
(3)v[0]

=
(
gh(1)(2)ω

(3) ./ (ω(5) ⇀ ψ ↼ ω(1))(ω(4)S(h(2)) ⇀ ϕ ↼ h(1)(1)ω
(2))
)
v

If, conversely, V ∈ DM, then V ∈ H
HY2D by hv = (h ./ ε)v, and 〈ϕ, v[−1]〉v[0] =

(1 ./ ϕ)v, since H 3 h 7→ h ./ ε ∈ D is multiplicative and unital, and since

〈ϕ, (hv)[−1]〉(hv)[0] = (1 ./ ϕ)(h ./ ε)v

= (h(1)(2) ./ S(h(2)) ⇀ ϕ ↼ h(1)(1))v

= 〈S(h(2)) ⇀ ϕ↼ h(1)(1), v[−1]〉h(1)(2)v[0]

= 〈ϕ, h(1)(1)v[−1]S(h(2))〉h(1)(2)v[0]
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and

〈ϕ, v[−1]〉〈ψ, v[0][−1]〉v[0][0]

= (1 ./ ψ)(1 ./ ϕ)v

= (ω(3) ./ (ω(5) ⇀ ψ ↼ ω(1))(ω(4) ⇀ ϕ ↼ ω(2)))v

= 〈(ω(5) ⇀ ψ ↼ ω(1))(ω(4) ⇀ ϕ ↼ ω(2)), v[−1]〉ω(3)v[0]

= 〈ω(5) ⇀ ψ ↼ ω(1), v[−1](1)〉〈ω(4) ⇀ ϕ ↼ ω(2), v[−1](2)〉ω(3)v[0]

= 〈ψ, ω(1)v[−1](1)ω
(5)〉〈ϕ, ω(2)v[−1](2)ω

(4)〉ω(3)v[0]

hold for all v ∈ V , h ∈ H , and ϕ, ψ ∈ H∗.
It remains to verify that multiplication is associative. For this it suffices to find

W ∈ DM such that the (by definition multiplicative) map L : D 3 d 7→ (v 7→ dv) ∈
End(W ) is injective. To verify injectivity, it suffices to find w ∈ Hom(H,W ) and
ϑ ∈ Hom(W,H) with ϑ((h ./ ϕ)w(g)) = h〈ϕ, g〉 for all g, h ∈ H and ϕ ∈ H∗, since
this implies ϑ(L(h ./ ϕ)(w(gi)))⊗ gi = h〈ϕ, gi〉⊗ gi = h⊗ϕ when gi⊗ gi ∈ H⊗H∗
is the canonical element, with summation over i understood.

Hence, we are looking for W ∈ H
HY2D, w ∈ Hom(H,W ), and ϑ ∈ Hom(W,H)

with ϑ(〈ϕ,w(g)[−1]〉hw(g)[0]) = h〈ϕ, g〉 for all g, h ∈ H and ϕ ∈ H∗, which amounts
to w(g)[−1] ⊗ ϑ(hw(g)[0]) = g ⊗ h for all g, h ∈ H .

Let V be the left H-module H with the trivial right H-module structure, and
W := ad(H ⊗ V ). Then R(W ) = ad(H ⊗ V ) ⊗ H ∼= (H ⊗ V ) ⊗ H , which is
naturally an object of HHMH

H (the cofree right H-comodule generated by the cofree
left H-comodule generated by V ∈ HMH). The corresponding map λ′ making W
a Yetter-Drinfeld module of the second kind is defined to make the left hand square
of the following diagram commute:

(H ⊗ V )⊗H λ //

π

��

H ⊗ ((H ⊗ V )⊗H)

H⊗π
��

ε2 // H ⊗ (V ⊗H)

H⊗V⊗ε
��

ad(H ⊗ V ) λ′ // H ⊗ ad(H ⊗ V )
H⊗ϑ

// H ⊗ V

The right hand square, in which ε2 is short for H ⊗ ε ⊗ V ⊗ H , and ϑ := ε ⊗
V : ad(H ⊗ V )→ V , commutes trivially. Now the composition of the top arrows is
simply Φ, cf. (2.2). Hence we have

(H ⊗ ϑ)λ′(g ⊗ v) = (H ⊗ ϑ)λ′π(g ⊗ v ⊗ 1) = (H ⊗H ⊗ ε)Φ(g ⊗ v ⊗ 1) = g ⊗ v

for g ∈ H and v ∈ V . Define w : H → W by w(h) = h ⊗ 1. Then since ϑ is an
H-module map, we have further w(g)[−1] ⊗ ϑ(hw(g)[0]) = w(g)[−1] ⊗ hϑ(w(g)[0]) =
g ⊗ h.

Remark 6.4. We know that the category H
HY2D is a monoidal category, since it

is equivalent to the monoidal category H
HMH

H . It is not hard to check that the
underlying functor toMk is a strict incoherent tensor functor. Consequently D(H)
is a quasibialgebra. However, it appears to be rather complicated to describe the
monoidal category structure of HHY2D, and hence the quasibialgebra structure of
D(H), explicitly at this point. We will attack this problem in Section 9.
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7. Duality and the center

It is the author’s creeping suspicion that all the material in this section is folklore.
Certainly computations with ‘mates’ very similar to those below are well-known,
like for example the formula in [7, Prop. XIV.3.1]. The use of mates to define
braidings on dual vector spaces goes back at least to work of Lyubashenko [8].
However, since the precise conclusions below do not appear to be in the literature,
we develop the interplay between the center construction and duality in some detail.

Definition 7.1. Let C be a monoidal category. The (left) weak center W(C) of
C has as its objects pairs (V, σV,–) in which V is an object of C, and in which
σV,X : V ⊗X → X ⊗ V is natural in X ∈ C, makes

V ⊗ (X ⊗ Y )
σV,X⊗Y

// (X ⊗ Y )⊗ V Φ // X ⊗ (Y ⊗ V )

(V ⊗X)⊗ Y

Φ

OO

σV X⊗Y // (X ⊗ V )⊗ Y Φ // X ⊗ (V ⊗ Y )

X⊗σV Y

OO

commute for all X,Y ∈ C, and satisfies σV I = idV .
The last condition is redundant if σV,– is an isomorphism; if this is the case we

say that (V, σV,–) is in the center Z(C).
A morphism f : (V, σV,–) → (W,σW,–) in the (weak) center is defined to be a

morphism f : V →W satisfying σWX(f ⊗X) = (X ⊗ f)σV X for all X ∈ C.
A tensor product (V, σV,–) ⊗ (W,σW,–) := (V ⊗W,σV⊗W,–) making the (weak)

center a monoidal category is defined by commutativity of

(V ⊗W )⊗X

σV⊗W,X

��

Φ // V ⊗ (W ⊗X)
V⊗σWX // V ⊗ (X ⊗W )

X ⊗ (V ⊗W ) (X ⊗ V )⊗WΦoo (V ⊗X)⊗W

Φ

OO

σVX⊗Woo

for X ∈ C. The neutral object is (I, σI,–) with σIX = idX .

Let C be a monoidal category. Recall that if X ∈ C has a left dual, then we have
bijections

C(A⊗X,B) 3 f 7→ (f ⊗X∨)(A ⊗ db) ∈ C(A,B ⊗X∨),

with inverse f 7→ (B ⊗ ev)(f ⊗X), and

C(A,X ⊗B) 3 f 7→ (ev⊗B)(X∨ ⊗ f) ∈ C(X∨ ⊗A,B),

with inverse f 7→ (X ⊗ f)(db⊗A). (We have only given the formulas for the strict
case each time.) Combining the two, we have bijections

C(A⊗X,X ⊗B) 3 F 7→ F [ ∈ C(X∨ ⊗A,B ⊗X∨).

Following Joyal and Street, we call F [ the mate of F . We will use mates to see how
the center construction behaves with respect to duals.

Lemma 7.2. Let C be a monoidal category, and assume that X ∈ C has a left dual
X∨. Let (V, σV,–) ∈ W(C). Then σV,X∨ is an isomorphism.
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Proof. We assume that C is strict, and claim that the mate σ[ := σ[V X is inverse to
σ := σV,X∨ . To prove that σ[σ = idV⊗X∨ , it suffices to check that

(V ⊗ ev)(σ[σ ⊗X) = V ⊗ ev : V ⊗X∨ ⊗X → V,

which is done by the diagram

X∨ ⊗ V ⊗X σ[⊗X
//

X∨⊗σ
��

V ⊗X∨ ⊗X
V⊗ev

��

V ⊗X∨ ⊗X σ //

V⊗ev

CC

σ⊗X
55llllllllllllll

X∨ ⊗X ⊗ V
ev⊗V

// V

in which the curved bottom triangle is naturality of σ applied to ev. To prove
σσ[ = id, one uses a dual diagram to check that (X⊗σσ[)(db⊗V ) = (db⊗V ).

Lemma 7.3. Let C be a monoidal category, and (V, σV,–) ∈ Z(C). Assume V has
a left dual V ∨ in C. Then (V, σV,–) has a left dual in the weak center W(C).
Proof. We assume that C is strict, and claim that (V ∨, σV ∨,–), defined by σV ∨,X =
(σ−1
XV )[ for X ∈ C, is a left dual for (V, σV,–) in W(C).
To show that (X ⊗ σV ∨,Y )(σV ∨,X ⊗ Y ) = σV ∨,X⊗Y for X,Y ∈ C, it suffices to

check that the following diagram commutes on the outside:

V ∨ ⊗X ⊗ Y ⊗ V
σ⊗Y⊗V

//

V ∨⊗X⊗σ−1

��

X ⊗ V ∨ ⊗ Y ⊗ V
X⊗σ⊗V

//

X⊗V ∨⊗σ−1

��

X ⊗ Y ⊗ V ∨ ⊗ V

X⊗Y⊗ev

��

V ∨ ⊗X ⊗ V ⊗ Y

V ∨⊗σ−1⊗Y
��

σ⊗V⊗Y
// X ⊗ V ∨ ⊗ V ⊗ Y

X⊗ev⊗Y

**UUUUUUUUUUUUUUUUUU

V ∨ ⊗ V ⊗X ⊗ Y ev⊗X⊗Y
// X ⊗ Y,

which it does since all its inner parts commute trivially or by definition of σV ∨,–.
Hence (V ∨, σV ∨,–) is in the weak center. To see that it is dual to (V, σV,–) we

have to check that ev, db are morphisms in the weak center. This, however, is
simply the definition of σV ∨,–.

Corollary 7.4. Let C be a left and right rigid monoidal category. Then the weak
center of C coincides with the center, and it is left and right rigid.

As a special case of the above, we also see that σV ∨,W∨ = σ[[V W holds for V ∈
Z(C), if C is left and right rigid. Under the usual identification D of V ∨⊗W∨ with
(W ⊗ V )∨, this amounts to saying that

σV ∨,W∨ =
(
V ∨ ⊗W∨ D−1

−−→ (W ⊗ V )∨
σ∨VW−−−→ (V ⊗W )∨ D−→W∨ ⊗ V ∨

)
(7.1)

8. Yetter-Drinfeld modules of the first kind

In this section we will deal with the version of Yetter-Drinfeld modules over
quasi-Hopf algebras that was introduced (without using this term) by Majid [10]
to analyze the center of the category of modules (we will find this interpretation
again in Theorem 8.2).
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Definition 8.1. Let H be a quasibialgebra. A Yetter-Drinfeld H-module of the
first kind is a left H-module V equipped with a map λ : V → H ⊗ V , λ(v) =:
v(−1) ⊗ v(0), satisfying (ε⊗ V )λ = idV ,

h(1)v(−1) ⊗ h(2)v(0) = (h(1)v)(−1)h(2) ⊗ (h(1)v)(0),

and

φ̃(1)(φ(1)v)(−1)(1)φ
(2) ⊗ φ̃(2)(φ(1)v)(−1)(2)φ

(3) ⊗ φ̃(3)(φ(1)v)(0)

= φ(1)v(−1) ⊗ (φ(2)v(0))(−1)φ
(3) ⊗ (φ(2)v(0))(0)

for v ∈ V and h ∈ H . We denote by H
HY1D the category of Yetter-Drinfeld modules

of the first kind.

Theorem 8.2. Let H be a quasibialgebra, and V ∈ HM. A bijection between

(1) maps λ : V → H ⊗ V , λ(v) = v(−1) ⊗ v(0), making V a Yetter-Drinfeld
module of the first kind,

(2) natural transformations σV,– making V an object of the weak center,
(3) H-bimodule maps σ : V ⊗H → H ⊗ V making the diagram

V ⊗H

σ

��

V⊗∆
// V ⊗ (H ⊗H) Φ−1

// (V ⊗H)⊗H

σ⊗H
��

(H ⊗ V )⊗H

Φ

��

H ⊗ (V ⊗H)

H⊗σ
��

H ⊗ V ∆⊗V
// (H ⊗H)⊗ V Φ // H ⊗ (H ⊗ V )

commute and satisfying (ε⊗ V )σ = V ⊗ ε, and
(4) maps Λ: V ⊗H → H⊗ (V ⊗H) making V ⊗H ∈ HMH

H an object of HHMH
H ,

is given by the formulas σV X(v ⊗ x) = v(−1)x⊗ v(0), σ = σV H , λ(v) = σ(v ⊗ 1H),

Λ =
(
V ⊗H V⊗∆−−−→ V ⊗ (H ⊗H) Φ−1

−−→ (V ⊗H)⊗H

σ⊗H−−−→ (H ⊗ V )⊗H Φ−→ H ⊗ (V ⊗H)
)
,

and σ = (H ⊗ V ⊗ ε)Λ.

Proof. We get from (1) to (2) by direct computation: It is clear that σV X(v⊗x) =
v(−1)x⊗v(0) defines a natural transformation, which consists of H-linear maps since

hσVX(v ⊗ x) = h(v(−1)x⊗ v(0)) = h(1)v(−1)x⊗ h(2)v(0)

= (h(1)v)(−1)h(2)x⊗ (h(1)v)(0) = σV X(h(v ⊗ x)),
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and satisfies

(X⊗σV Y )Φ(σV X ⊗ Y )(v ⊗ x⊗ y)

= (X ⊗ σV Y )Φ(v(−1)x⊗ v(0) ⊗ y)

= (X ⊗ σV Y )(φ(1)v(−1)x⊗ φ(2)v(0) ⊗ φ(3)y)

= φ(1)v(−1)x⊗ (φ(2)v(0))(−1)φ
(3)y ⊗ (φ(2)v(0))(0)

= φ̃(1)(φ(1)v)(−1)(1)φ
(2)x⊗ φ̃(2)(φ(1)v)(−1)(2)φ

(3)y ⊗ φ̃(3)(φ(1)v)(0)

= Φ((φ(1)v)(−1)(1)φ
(2)x⊗ (φ(1)v)(−1)(2)φ

(3)y ⊗ (φ(1)v)(0))

= Φ((φ(1)v)(−1)(φ(2)x⊗ φ(3)y)⊗ (φ(1)v)(0))

= ΦσV,X⊗Y (φ(1)v ⊗ φ(2)x⊗ φ(3)y)

= ΦσV,X⊗Y Φ(v ⊗ x⊗ y)

for all X,Y ∈ HM and x ∈ X , y ∈ Y .
Given that (V, σV,–) is in the weak center, the diagram in (3) commutes for

σ = σV,H : We can insert the arrow σV,H⊗H down the middle of the diagram; then
the right hand part commutes by the defining axiom of the center, and the left
hand part by naturality of σV,– applied to ∆.

The bijection between the data in (3) and (4) is essentially an observation of
Tambara: In fact, for any monoidal category C, object V ∈ C, and coalgebra H in
C, we have a bijection between morphisms σ : V ⊗H → H ⊗ V in C satisfying the
conditions in (3), and left H-comodule structures on V ⊗ H making it an H-H-
bicomodule in C. Our case is C = HMH . Tambara [16] proves the dual statement
for C = Mk. The general case is actually no harder, provided that C is strict; it
is written out merely for completeness in [13]. We can then apply the principle
that general statements on abstract monoidal categories need only be proved in the
strict case.

We go back from (3) to (1) utilizing the bijection between (3) and (4) for con-
venience. Any right H-module map σ : V ⊗H → H ⊗ V has the form σ(v ⊗ h) =
v(−1)h ⊗ v(0) for a unique map λ : V 3 v 7→ v(−1) ⊗ v(0) ∈ H ⊗ V , namely
λ(v) = σ(v ⊗ 1). Now assume that σ fulfills the conditions in (3). Since σ is
left H-linear, we have h(1)v(−1) ⊗ h(2)v(0) = hλ(v) = hσ(v ⊗ 1) = σ(h(v ⊗ 1)) =
(h(1)v)(−1)h(2)⊗ (h(1)v)(0) for all h ∈ H and v ∈ V . The left H-comodule structure
on (V ⊗H) is given by

Λ(v ⊗ h) = Φ(σ ⊗H)Φ−1(v ⊗ h(1) ⊗ h(2))

= Φ(σ(φ(−1)v ⊗ φ(−2)h(1) ⊗ φ(−3)h(2))

= Φ((φ(−1)v)(−1)φ
(−2)h(1) ⊗ (φ(−1)v)(0) ⊗ φ(−3)h(2))

= φ(1)(φ(−1)v)(−1)φ
(−2)h(1) ⊗ φ(2)(φ(−1)v)(0) ⊗ φ(3)φ(−3)h(2),

and hence satisfies

(φ(1)v ⊗ 1)(−1)φ
(2) ⊗ (φ(1)v ⊗ 1)(0)φ

(3) = φ(1)v(−1) ⊗ φ(2)v(0) ⊗ φ(3)

and, for ε2 := (V ⊗ ε) : V ⊗H → V ,

(v ⊗ h)(−1) ⊗ ε2((v ⊗ h)(0)) = v(−1)h⊗ v(0).
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Since ε2 is an H-bimodule map, with the trivial right H-module structure on V ,
coassociativity for the left H-comodule M = V ⊗H in HMH implies

φ(1)m(−1)(1) ⊗ φ(2)m(−1)(2) ⊗ φ(3)ε2(m(0)) = m(−1) ⊗m(0)(−1) ⊗ ε2(m(0)(0)),

so that finally

φ(1)v(−1) ⊗ (φ(2)v(0))(−1)φ
(3) ⊗ (φ(2)v(0))(0)

= φ(1)v(−1) ⊗ (φ(2)v(0) ⊗ φ(3))(−1) ⊗ ε2((φ(2)v(0) ⊗ φ(3))(0))

= (φ(1)v ⊗ 1)(−1)φ
(2) ⊗ ((φ(1)v ⊗ 1)(0)φ

(3))(−1)

⊗ ε2(((φ(1)v ⊗ 1)(0)φ
(3))(0))

= (φ(1)v ⊗ 1)(−1)φ
(2) ⊗ (φ(1)v ⊗ 1)(0)(−1)φ

(3) ⊗ ε2((φ(1)v ⊗ 1)(0)(0))

= φ̃(1)(φ(1)v ⊗ 1)(−1)(1)φ
(2) ⊗ φ̃(2)(φ(1)v ⊗ 1)(−1)(2)φ

(3)

⊗ ε2(φ̃(3)(φ(1)v ⊗ 1)(0))

= φ̃(1)(φ(1)v)(−1)(1)φ
(2) ⊗ φ̃(2)(φ(1)v)(−1)(2)φ

(3) ⊗ φ̃(3)(φ(1)v)(0).

Corollary 8.3. Let H be a quasi-Hopf algebra. Then we have category equivalences

H
HY2D ∼= H

HMH
H
∼= H
HY1D ∼=W(HM) ∼= Z(HM),

which are monoidal category equivalences with a suitably defined monoidal category
structure on H

HY1D.

We shall spend some time now finding out how these category equivalences look
explicitly. The equivalence H

HY1D ∼=W(HM) was of course given in Theorem 8.2.
The resulting monoidal category structure on H

HY1D is given by endowing the tensor
product H-module of V,W ∈ H

HY1D with the ‘comodule’ structure

λ :=
(
V ⊗W V⊗W⊗η−−−−−→ (V ⊗W )⊗H σV⊗W,H−−−−−→ H ⊗ (V ⊗W )

)
,

that is,

λ(v ⊗ w) = σV⊗W,H(v ⊗ w ⊗ 1)

= Φ(σV H ⊗W )Φ−1(V ⊗ σWH)Φ(v ⊗ w ⊗ 1)

= Φ(σV H ⊗W )Φ−1(φ(1)v ⊗ (φ(2)w)(−1) ⊗ (φ(3)w)(0))

= Φ(σV H ⊗W )(φ(−1)φ(1)v ⊗ φ(−2)(φ(2)w)(−1) ⊗ φ(−3)(φ(3)w)(0))

= φ̃(1)(φ(−1)φ(1)v)(−1)φ
(−2)(φ(2)w)(−1)

⊗ φ̃(2)(φ(−1)φ(1)v)(0) ⊗ φ̃(3)φ(−3)(φ(3)w)(0)

The equivalence H
HMH

H
∼= H

HY1D is also in Theorem 8.2, while the equivalence
H
HMH

H
∼= H

HY2D is described in Theorem 5.3. We are interested in computing the
composition H

HY1D ∼= H
HY2D. This composition leaves the underlying H-modules

fixed and only translates between the two ‘comodule’ structures λ for V ∈ H
HY1D

and λ′ for V ∈ H
HY2D as follows: Given λ, we have

λ′(v) = (H ⊗ V ⊗ ε)ζΛ(v ⊗ 1) = (φ(−1)v)(−1)φ
(−2)βS(φ(−3))⊗ (φ(−1)v)(0),
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and given λ′, we have

λ(v) = (H ⊗ V ⊗ ε)Λ(v ⊗ 1)

= (H ⊗ V ⊗ ε)ζ−1(v[−1] ⊗ v[0] ⊗ 1)

= (H ⊗ V ⊗ ε)Φ−1τ−1(v[−1] ⊗ v[0] ⊗ 1)

= (H ⊗ V ⊗ ε)τ−1(v[−1] ⊗ v[0] ⊗ 1)

= φ(1)
(1)v[−1]S(φ(2))αφ(3) ⊗ φ(1)

(2)v[0]

9. The double as a quasitriangular quasi-Hopf algebra

We now use Yetter-Drinfeld modules of the first kind to describe the quasitrian-
gular quasi-Hopf algebra structure of the Drinfeld double. First, we need to find
the counterpart in D(H) for the equivalence H

HY1D ∼= H
HY2D.

Definition 9.1. Let H be a finite-dimensional quasi-Hopf algebra. We define a
map T : H∗ → D(H) by

T(ϕ) = φ(1)
(2) ./ S(φ(2))αφ(3) ⇀ ϕ ↼ φ(1)

(1).

Lemma 9.2. Let H be a finite-dimensional quasi-Hopf algebra. Then D(H) is
generated as an algebra by H and the image of T. The equivalence D(H)M∼= H

HY1D
is described by the formula T(ϕ)v = 〈ϕ, v(−1)〉v(0) for all v ∈ V ∈ H

HY1D.

Proof. For v ∈ V ∈ H
HY1D ∼= D(H)M we have

T(ϕ)v = 〈S(φ(2))αφ(3) ⇀ ϕ ↼ φ(1)
(1), v[−1]〉φ(1)

(2)v[0]

= 〈ϕ, φ(1)
(1)v[−1]S(φ(2))αφ(3)〉φ(1)

(2)v[0] = 〈ϕ, v(−1)〉v(0).

On the other hand,

(1 ./ ϕ)v = 〈ϕ, v[−1]〉v[0] = 〈ϕ, (φ(1)v)(−1)φ
(−2)βS(φ(−3))〉(φ(−1)v)(0)

= T(φ(−2)βS(φ(−3)) ⇀ ϕ)φ(−1)v

for all v implies 1 ./ ϕ = T(φ(−2)βS(φ(−3)) ⇀ ϕ)φ(−1), so that in particular D(H)
is generated as an algebra by H ⊂ D(H) and T(H∗).

Theorem 9.3. The Drinfeld double of a finite-dimensional quasi-Hopf algebra H
has a unique quasibialgebra structure such that H ⊂ D(H) is a subquasibialgebra,
and

∆(T(ϕ)) = φ̃(2)T(ϕ(1) ↼ φ̃(1))φ(−1)φ(1) ⊗ φ̃(3)φ(−3)T(ϕ(2) ↼ φ(−2))φ(3)(9.1)

for all ϕ ∈ H∗. D(H) has a unique quasiantipode such that the inclusion H ⊂ D(H)
preserves quasiantipodes, and

S(T(ϕ)) = f(2)T(f(−2) ⇀ S−1(ϕ) ↼ f(1))f(−1)(9.2)

for all ϕ ∈ H∗, where we have used the same symbol S to denote the dual automor-
phism of H∗. Moreover, D(H) is quasitriangular with R-matrix

R = T(hi)⊗ (hi ./ ε),(9.3)

where hi⊗hi ∈ H⊗H∗ is the canonical element, with summation over i understood.
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Proof. It is clear that D(H) has a quasibialgebra structure, with H as a sub-
quasibialgebra, since D(H)Mf is a monoidal category by Corollary 8.3, and the
underlying functor to HMf is monoidal. Now for V,W ∈ D(H)M ∼= H

HY1D and
elements v ∈ V,w ∈ W the calculation

T(ϕ)(v ⊗ w) = (ϕ ⊗ V ⊗W )λ(v ⊗ w)

= 〈ϕ, φ̃(1)(φ(−1)φ(1)v)(−1)φ
(−2)(φ(2)w)(−1)〉

· φ̃(2)(φ(−1)φ(1)v)(0) ⊗ φ̃(3)φ(−3)(φ(3)w)(0)

= 〈ϕ(1), φ̃
(1)(φ(−1)φ(1)v)(−1)〉〈ϕ(2), φ

(−2)(φ(2)w)(−1)〉
· φ̃(2)(φ(−1)φ(1)v)(0) ⊗ φ̃(3)φ(−3)(φ(3)w)(0)

= 〈ϕ(1) ↼ φ̃(1), (φ(−1)φ(1)v)(−1)〉〈ϕ(2) ↼ φ(−2), (φ(2)w)(−1)〉
· φ̃(2)(φ(−1)φ(1)v)(0) ⊗ φ̃(3)φ(−3)(φ(3)w)(0)

= φ̃(2)T(ϕ(1) ↼ φ̃(1))φ(−1)φ(1)v ⊗ φ̃(3)φ(−3)T(ϕ(2) ↼ φ(−2))φ(3)w

proves (9.1) (uniqueness is obvious since H and the image of T generate the algebra
D(H)).

Since the center of HMf is left and right rigid, with dual objects and evalu-
ation and coevaluation maps the same as in HMf , it is clear that D(H) has a
quasiantipode (Ŝ, α̂, β̂) with α̂ = α, β̂ = β, and Ŝ(h) = S(h) for h ∈ H (which is
what we mean by the inclusion H ⊂ D(H) preserving quasiantipodes). To deter-
mine the quasiantipode explicitly, we use (7.1) to compute, for V ∈ D(H)Mf and
W ∈ HMf , v ∈ V , ν ∈ V ∗, w ∈W , and κ ∈ W ∗:

〈ν(−1)κ⊗ ν(0), w ⊗ v〉 = 〈σV ∨,W∨(ν ⊗ κ), w ⊗ v〉
= 〈D−1σ∗D(ν ⊗ κ), w ⊗ v〉
= 〈σ∗D(ν ⊗ κ), f(−1)v ⊗ f(−2)w〉
= 〈D(ν ⊗ κ), (f(−1)v)(−1)f

(−2)w ⊗ (f(−1)v)(0)〉
= 〈ν ⊗ κ, f(2)(f(−1)v)(0) ⊗ f(1)(f(−1)v)(−1)f(−2)w〉
= 〈ν, f(2)(f(−1)v)(0)〉〈S−1(f(1)(f(−1)v)(−1)f(−2))κ〉,

which implies

ν(−1)〈ν(0), v〉 = 〈ν, f(2)(f(−1)v)(0)〉S−1(f(1)(f(−1)v)(−1)f(−2)) ∈ H,

and hence, for ϕ ∈ H∗,

〈T(ϕ)ν, v〉 = 〈ϕ, ν(−1)〉〈ν(0), v〉
= 〈ν, f(2)(f(−1)v)(0)〉〈S−1(ϕ), f(1)(f(−1)v)(−1)f(−2)〉
= 〈ν, f(2)T(f(−2) ⇀ S−1(ϕ) ↼ f(1))f(−1)v〉.

This proves (9.2), which clearly determines S uniquely.
Finally, without recalling the axiomatics of quasitriangular quasibialgebras, we

note that D(H) has a quasitriangular structure since D(H)M∼= Z(HM) is braided,
and to see that the element R defined by (9.3) is the universal R-matrix, we need
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only calculate

R(2)w ⊗R(1)v = (hi ./ ε)w ⊗T(hi)v

= hiw ⊗ 〈hi, v(−1)〉v(0) = v(−1)w ⊗ v(0) = σVW (v ⊗ w)

for v ∈ V ∈ D(H)M and w ∈ W ∈ HM.

Remark 9.4. Using Lemma 9.2, the definition of a Yetter-Drinfeld module of the
first kind yields the relations

h(2)T(ϕ ↼ h(1)) = T(h(2) ⇀ ϕ)h(1),

T(φ(3) ⇀ ψ)T(ϕ ↼ φ(1))φ(3) = φ̃(3)T
(

(φ(2) ⇀ ϕ↼ φ̃(1))(φ(3) ⇀ ψ ↼ φ̃(2))
)
φ(1)

in D(H), for h ∈ H and ϕ, ψ ∈ H∗, which appear to be defining relations for D(H)
if we throw in the relations expressing that H ↪→ D(H) is an algebra map. Using
the explicit expression for ϕ⊗h = θ−1

H∗θH∗(ϕ⊗h), one can rewrite the first relation
as

hT(ϕ) = φ(−3)T((h(2)φ
(3))(2) ⇀ ϕ ↼ φ(1)βS(φ(−1)h(1)φ

(2))αφ(−2))(h(2)φ
(3))(1),

which can, by and large, be understood as a commutation relation shifting h from
the left to the right of the image of T. On the grounds of similar formulas, Majid
claims (with slight differences in conventions) in [10] that it is clear that H⊗H∗ has
an algebra structure such that an equivalence HHY1D ∼= H∗⊗HM can be described by
(h⊗ϕ)v = 〈ϕ, (hv)(−1)〉(hv)(0). However, the obstinate appearance of the ‘element’
φ(−3) ∈ H to the left of T(–) in the above formula for hT(ϕ) makes it quite unclear
how to use this formula to define a multiplication in H∗ ⊗H so that ϕ ⊗ h would
correspond to T(ϕ)h in our D(H). And even if such a multiplication were given in
[10], it would remain to check that it is associative, which is not guaranteed by the
mere fact that ‘modules’ over H∗ ⊗H classify objects of the center, as long as we
do not know any objects in the center explicitly.

It appears that the idea of Hausser and Nill to use different generators for D(H)
to describe its multiplication, and its quasi-Hopf algebra structure, respectively, is
essential to really understanding the Drinfeld double; we have found a counterpart
to this idea in the two versions of Yetter-Drinfeld modules in the present paper.
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