Hopf modules and the double of a quasi-Hopf algebra
Author:
Peter Schauenburg
Journal:
Trans. Amer. Math. Soc. 354 (2002), 3349-3378
MSC (2000):
Primary 16W30
DOI:
https://doi.org/10.1090/S0002-9947-02-02980-X
Published electronically:
April 1, 2002
MathSciNet review:
1897403
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We give a different proof for a structure theorem of Hausser and Nill on Hopf modules over quasi-Hopf algebras. We extend the structure theorem to a classification of two-sided two-cosided Hopf modules by Yetter-Drinfeld modules, which can be defined in two rather different manners for the quasi-Hopf case. The category equivalence between Hopf modules and Yetter-Drinfeld modules leads to a new construction of the Drinfeld double of a quasi-Hopf algebra, as proposed by Majid and constructed by Hausser and Nill.
- 1. Alistair K. Macpherson, Atomic mechanics of solids, Mechanics and Physics of Discrete Systems, vol. 2, North-Holland Publishing Co., Amsterdam, 1990. MR 1140707
- 2. V. G. Drinfel′d, Quasi-Hopf algebras, Algebra i Analiz 1 (1989), no. 6, 114–148 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 6, 1419–1457. MR 1047964
- 3. Frank Hausser and Florian Nill, Diagonal crossed products by duals of quasi-quantum groups, Rev. Math. Phys. 11 (1999), no. 5, 553–629. MR 1696105, https://doi.org/10.1142/S0129055X99000210
- 4. Frank Hausser and Florian Nill, Doubles of quasi-quantum groups, Comm. Math. Phys. 199 (1999), no. 3, 547–589. MR 1669685, https://doi.org/10.1007/s002200050512
- 5. HAUSSER, F., AND NILL, F. Integral theory for quasi-Hopf algebras. preprint (math. QA/9904164).
- 6.
JOYAL, A., AND STREET, R.
Braided tensor categories.
Adv. in Math. 102 (1993), 20-78. - 7. André Joyal and Ross Street, Braided tensor categories, Adv. Math. 102 (1993), no. 1, 20–78. MR 1250465, https://doi.org/10.1006/aima.1993.1055
- 8. V. V. Lyubashenko, Hopf algebras and vector-symmetries, Uspekhi Mat. Nauk 41 (1986), no. 5(251), 185–186 (Russian). MR 878344
- 9. Shahn Majid, Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995. MR 1381692
- 10. S. Majid, Quantum double for quasi-Hopf algebras, Lett. Math. Phys. 45 (1998), no. 1, 1–9. MR 1631648, https://doi.org/10.1023/A:1007450123281
- 11. Bodo Pareigis, Non-additive ring and module theory. I. General theory of monoids, Publ. Math. Debrecen 24 (1977), no. 1-2, 189–204. MR 450361
- 12. B. Pareigis, Non-additive ring and module theory. II. \cal𝐶-categories, \cal𝐶-functors and \cal𝐶-morphisms, Publ. Math. Debrecen 24 (1977), no. 3-4, 351–361. MR 498792
- 13. Peter Schauenburg, Hopf modules and Yetter-Drinfel′d modules, J. Algebra 169 (1994), no. 3, 874–890. MR 1302122, https://doi.org/10.1006/jabr.1994.1314
- 14.
SCHAUENBURG, P.
Hopf algebra extensions and monoidal categories.
preprint (2001). - 15. Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. MR 0252485
- 16. D. Tambara, The coendomorphism bialgebra of an algebra, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37 (1990), no. 2, 425–456. MR 1071429
- 17. S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys. 122 (1989), no. 1, 125–170. MR 994499
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16W30
Retrieve articles in all journals with MSC (2000): 16W30
Additional Information
Peter Schauenburg
Affiliation:
Mathematisches Institut der Universität München, Theresienstr. 39, 80333 München, Germany
Email:
schauen@rz.mathematik.uni-muenchen.de
DOI:
https://doi.org/10.1090/S0002-9947-02-02980-X
Keywords:
Quasi-Hopf algebra,
quantum double,
Yetter-Drinfeld module,
Hopf module
Received by editor(s):
April 10, 2001
Received by editor(s) in revised form:
November 13, 2001
Published electronically:
April 1, 2002
Article copyright:
© Copyright 2002
American Mathematical Society