Hopf modules and the double of a quasi-Hopf algebra
Author:
Peter Schauenburg
Journal:
Trans. Amer. Math. Soc. 354 (2002), 3349-3378
MSC (2000):
Primary 16W30
DOI:
https://doi.org/10.1090/S0002-9947-02-02980-X
Published electronically:
April 1, 2002
MathSciNet review:
1897403
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We give a different proof for a structure theorem of Hausser and Nill on Hopf modules over quasi-Hopf algebras. We extend the structure theorem to a classification of two-sided two-cosided Hopf modules by Yetter-Drinfeld modules, which can be defined in two rather different manners for the quasi-Hopf case. The category equivalence between Hopf modules and Yetter-Drinfeld modules leads to a new construction of the Drinfeld double of a quasi-Hopf algebra, as proposed by Majid and constructed by Hausser and Nill.
- 1.
DIJKGRAAF, R., PASQUIER, V., AND ROCHE, P.
Quasi Hopf algebras, group cohomology and orbifold models.
Nuclear Phys. B Proc. Suppl. 18B (1990), 60-72. MR 92m:82138 - 2.
DRINFEL'D, V. G.
Quasi-Hopf algebras.
Leningrad Math. J. 1 (1990), 1419-1457. MR 91b:17016 - 3.
HAUSSER, F., AND NILL, F.
Diagonal crossed products by duals of quasi-quantum groups.
Rev. Math. Phys. 11 (1999), 553-629. MR 2000d:81069 - 4.
HAUSSER, F., AND NILL, F.
Doubles of quasi-quantum groups.
Comm. Math. Phys. 199 (1999), 547-589. MR 2000a:16075 - 5. HAUSSER, F., AND NILL, F. Integral theory for quasi-Hopf algebras. preprint (math. QA/9904164).
- 6.
JOYAL, A., AND STREET, R.
Braided tensor categories.
Adv. in Math. 102 (1993), 20-78. - 7. KASSEL, C. Quantum Groups, vol. 155 of Graduate Texts in Mathematics. Springer, 1995. MR 94m:18008
- 8.
LYUBASHENKO, V.
Hopf algebras and vector symmetries.
Russ. Math. Surveys 41 (1988), 153-154. MR 88c:58007 - 9.
MAJID, S.
Foundations of quantum group theory.
Cambridge Univ. Press, 1995. MR 97g:17016 - 10.
MAJID, S.
Quantum double for quasi-Hopf algebras.
Lett. Math. Phys. 45 (1998), 1-9. MR 2000b:16077 - 11.
PAREIGIS, B.
Non-additive ring and module theory I. General theory of monoids.
Publ. Math. Debrecen 24 (1977), 189-204. MR 56:8656 - 12.
PAREIGIS, B.
Non-additive ring and module theory II.
-categories,
-functors and
-morphisms.
Publ. Math. Debrecen 24 (1977), 351-361. MR 58:16834a - 13.
SCHAUENBURG, P.
Hopf modules and Yetter-Drinfel'd modules.
J. Algebra 169 (1994), 874-890. MR 95j:16047 - 14.
SCHAUENBURG, P.
Hopf algebra extensions and monoidal categories.
preprint (2001). - 15.
SWEEDLER, M. E.
Hopf Algebras.
Benjamin, New York, 1969. MR 40:5705 - 16.
TAMBARA, D.
The coendomorphism bialgebra of an algebra.
J. Fac. Sci. Univ. Tokyo, Sect.IA, Math. 37 (1990), 425-456. MR 91f:16048 - 17.
WORONOWICZ, S. L.
Differential calculus on compact matrix pseudogroups (quantum groups).
Comm. Math. Phys. 122 (1989), 125-170. MR 90g:58010
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16W30
Retrieve articles in all journals with MSC (2000): 16W30
Additional Information
Peter Schauenburg
Affiliation:
Mathematisches Institut der Universität München, Theresienstr. 39, 80333 München, Germany
Email:
schauen@rz.mathematik.uni-muenchen.de
DOI:
https://doi.org/10.1090/S0002-9947-02-02980-X
Keywords:
Quasi-Hopf algebra,
quantum double,
Yetter-Drinfeld module,
Hopf module
Received by editor(s):
April 10, 2001
Received by editor(s) in revised form:
November 13, 2001
Published electronically:
April 1, 2002
Article copyright:
© Copyright 2002
American Mathematical Society


