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FORMATION AND PROPAGATION OF SINGULARITIES
FOR 2× 2 QUASILINEAR HYPERBOLIC SYSTEMS

DE-XING KONG

Abstract. Employing the method of characteristic coordinates and the sin-
gularity theory of smooth mappings, in this paper we analyze the long-term
behaviour of smooth solutions of general 2× 2 quasilinear hyperbolic systems,
provide a complete description of the solution close to blow-up points, and
investigate the formation and propagation of singularities for 2× 2 systems of
hyperbolic conservation laws.

1. Introduction

It is well known that smooth solutions to nonlinear hyperbolic systems generally
exist in finite time even if the initial data is sufficiently smooth and small (see
[1], [3], [6], [8], [10]–[11], [14], [17]). After this time, only weak solutions (usually
containing shocks or other kinds of discontinuities) can be defined. The following
questions arise naturally:

(I) When and where do the solutions blow up?
(II) What quantities blow up? How do they blow up?

(III) What kinds of singularities appear? How do the discontinuities,
in particular, shocks grow out of nothing?

These problems are very important and interesting in the sense of both mathematics
and physics. For problems (I) and (II), some methods have been established and
many results have been obtained (see [1], [3], [6], [8], [10]–[11], [14], [17]). As for
problem (III), since this kind of nonlinear phenomenon is too complex, up to now,
only a few results on shock formation have been known. For a single conservation
law, these problems have been solved well by the characteristic method (see [5], [7],
[18]–[19]). For the p-system, Lebaud [13] discussed the problem of shock formation
under the hypothesis that one of the Riemann invariants is a constant. Recently,
in a manner similar to Lebaud’s, Chen and Dong [4] generalized the result given
in [13] to the case of general initial data. Bryant, Griffiths and Hsu [2] presented
a geometric theory of differential equations; in particular, for a 2 × 2 hyperbolic
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system of conservation laws, they showed that the geometric solution captures1 the
shock solution if, and only if, the system is special 2.

We consider the Cauchy problem for the general 2 × 2 quasilinear hyperbolic
system 

∂w

∂t
+ λ+(w, z)

∂w

∂x
= 0,

∂z

∂t
+ λ−(w, z)

∂z

∂x
= 0,

(1.1)

t = 0 : w = w0(x), z = z0(x),(1.2)

where w and z, the so-called Riemann invariants, are the unknown functions, and
λ±(w, z) are C1 functions, w0(x), z0(x) are C1 functions with bounded C1 norm.

Suppose that system (1.1) is strictly hyperbolic. Since we are only interested in
the solution near the blow-up point, without loss of generality, we assume that

λ−(w, z) < 0 < λ+(w, z).(1.3)

Suppose furthermore that each characteristic is genuinely nonlinear in the sense of
Lax. Without loss of generality, we may assume that

∂λ+(w, z)
∂w

> 0,
∂λ−(w, z)

∂z
> 0.(1.4)

Remark 1.1. It is well known that, for any given quasilinear hyperbolic system

∂ui
∂t

+
2∑
j=1

aij(u)
∂uj
∂x

= 0 (i = 1, 2),(1.5)

by a suitable invertible transformation of (u1, u2) we can always rewrite (1.5) as
a system of the form (1.1), at least in a local domain, where u = (u1, u2)T is the
unknown function and the aij(u) (i, j = 1, 2) are smooth given functions of u.

Remark 1.2. Some physical systems (for example, the system of isentropic gas dy-
namics) always satisfy the assumption that system (1.1) is genuinely nonlinear in
the sense of Lax. If only one of the characteristics is genuinely nonlinear, then we
may develop a similar theory. However, if system (1.1) is linearly degenerate in the
sense of Lax, that is, ∂λ+(w,z)

∂w ≡ 0 and ∂λ−(w,z)
∂z ≡ 0, then the C1 solution of the

Cauchy problem (1.1)-(1.2) always exists globally in time (see [14]).

In this paper, we present a systematic analysis of the long-term behaviour of
a smooth solution of the Cauchy problem (1.1)-(1.2); in particular, we provide a
complete description of the solution close to a blow-up point. Based on this, in
a way completely different from that of Lebaud [13], we give a detailed discussion
of the process of shock formation in the case when system (1.1) is of a form of
conservation laws. In particular, we do not need the assumption in [13] that one of
the Riemann invariants is a constant.

The paper is organized as follows. In §2 we give some preliminaries. Using
the method of characteristic coordinates and the singularity theory of the smooth

1For a scalar conservation law, the shock solution arises by taking a suitable cross-section of
the geometric solution. In this sense, we say the geometric solution captures the shock solution.

2Unfortunately, according to the definition of special system in [2], this kind of system is so
special that many physical systems (for example, the system of isentropic gas dynamics) do not
belong to this class.
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mappings, in §3 we determine exactly the blow-up time of a smooth solution of
the Cauchy problem (1.1)-(1.2) and the set of all blow-up points at this time, and
describe the breakdown mechanism of the smooth solution. In §4, under appropriate
assumptions we first prove that the solution is a blow-up solution of cusp type,
according to the terminology of Alinhac [1]; then we construct the envelope of
characteristics of the same family, and show that the formation of a singularity is
due to this envelope of characteristics and the singularity occurs at the starting
point of the envelope, i.e., the point with minimum t-value on the envelope. By
the way, a triple-valued solution and an artificial solution are introduced and some
estimates on the blow-up rates of the solution are also given in §4. In §5 we study
the 2 × 2 system of conservation laws. Based on §4, we construct a shock and a
weak discontinuity issuing from the blow-up point, and prove the existence of a
classical discontinuous solution in a local domain.

2. Preliminaries

In this section, we briefly recall some basic facts on the characteristic coordinates
for 2× 2 quasilinear hyperbolic systems.

By the existence and uniqueness of a local C1 solution of the Cauchy problem
for a quasilinear hyperbolic system (see [15]), there exists a positive number h such
that the Cauchy problem (1.1)-(1.2) has a unique C1 solution (w(t, x), z(t, x)) on
the strip D(h) = {(t, x) | 0 ≤ t ≤ h,−∞ < x < ∞}. On the existence domain of
the C1 solution, let x = x+(t, α) (resp. x = x−(t, β)) be the fast (resp. slow)
characteristic passing through any fixed point (0, α) (resp. (0, β)). We have

w (t, x+(t, α)) = w0(α), z (t, x−(t, β)) = z0(β),(2.1)

dx+ (t, α)
dt

= λ+ (w0 (α) , z (t, x+ (t, α))) , x+ (0, α) = α,(2.2)

dx− (t, β)
dt

= λ− (w (t, x− (t, β)) , z0 (β)) , x− (0, β) = β.(2.3)

It follows from (2.1) that on the existence domain of the C1 solution we have

m1 ≤ w(t, x) ≤ m1, m2 ≤ z(t, x) ≤ m2,(2.4)

0 < M? ≤ −λ−(w, z), λ+(w, z) ≤M? <∞,(2.5)

where m1 = infx∈IIR {w0(x)} , m1 = supx∈IIR {w0(x)} , m2 = infx∈IIR {z0(x)} , m2 =
supx∈IIR {z0(x)} , M? = inf(ν1,ν2)∈[m1,m1]×[m2,m2] {−λ−(ν1, ν2), λ+(ν1, ν2)} , M? =
sup(ν1,ν2)∈[m1,m1]×[m2,m2] {−λ−(ν1, ν2), λ+(ν1, ν2)} .

Remark 2.1. (2.4) implies that the solution itself always remains bounded on the
existence domain of the C1 solution. Hence, if the C1 solution blows up at a finite
time, then the first order derivatives of the solution must tend to the infinity at the
blow-up point.

Choose the characteristic coordinates α and β in the following way (see [9] or §4
of Chapter 2 in [14]): on any fixed fast (resp. slow) characteristic, α (resp. β) is
taken as the x-coordinate of the intersection point of this characteristic with the
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x-axis. It is easy to see that the half-plane t ≥ 0 in the (t, x)-plane reduces to the
half-plane α ≤ β in the (α, β)-plane, and

w = w0(α), z = z0(β).(2.6)

It turns out that the original Cauchy problem (1.1)-(1.2) reduces to
∂x

∂α
= λ− (w0 (α) , z0 (β))

∂t

∂α
,

∂x

∂β
= λ+ (w0 (α) , z0 (β))

∂t

∂β
,
∀ α < β,(2.7)

α = β : t = 0, x = β.(2.8)

Obviously, (2.7)-(2.8) is a Cauchy problem for a linear hyperbolic system; it
always has a unique global C1 solution (t(α, β), x(α, β)) on the half-plane α ≤ β.
Let Π be the mapping defined by the solution (t(α, β), x(α, β)) and J(α, β) be the
Jacobian ∂(t,x)

∂(α,β) of Π. Noting (2.7), we have

J(α, β) = (λ+(w0(α), z0(β))− λ−(w0(α), z0(β))) tα(α, β)tβ(α, β)

=
(
(λ−(w0(α), z0(β)))−1 − (λ+(w0(α), z0(β)))−1

)
xα(α, β)xβ(α, β).

(2.9)

Remark 2.2. It is easy to see that if α and β are the characteristic coordinates, then
α̃ = f(α) and β̃ = g(β) can also be taken as the characteristic coordinates, where
f and g are arbitrarily given C1 functions with f ′ 6= 0 and g′ 6= 0. By suitably
choosing the characteristic coordinates, we can get the corresponding problem on
the

(
α̃, β̃

)
-plane in a simpler form.

Combining Theorem 2.2 and Theorem 4.1 in Chapter 2 of [14] gives

Theorem 2.1. Under the assumptions (1.3)-(1.4), the Cauchy problem (1.1)-(1.2)
admits a unique global C1 solution on t ≥ 0 if and only if

w′0(x) ≥ 0, z′0(x) ≥ 0, ∀ x ∈ R;(2.10)

or equivalently
∂t

∂α
(α, β) < 0,

∂t

∂β
(α, β) > 0, ∀ α ≤ β.(2.11)

3. General blow-up

In this section, we determine exactly the blow-up time of a smooth solution and
the set of all blow-up points at this time, and describe the breakdown mechanism
of the C1 solution.

By Theorem 2.1, the C1 solution of the Cauchy problem (1.1)-(1.2) blows up in
a finite time if and only if the initial data is non-increasing. Therefore, throughout
this paper, we assume that

there exists a x∗ ∈ R such that w′0(x∗) < 0 or z′0(x∗) < 0.(H1)

Thus, noting Theorem 2.1 again, we have

J−1(0)
4
= {(α, β) |α ≤ β, J (α, β) = 0} 6= ∅,(3.1)

0 < t0
4
= inf

(α,β)∈J−1(0)
{t(α, β)} <∞.(3.2)

By a standard method (see [14]), we can easily prove the following lemma.
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Lemma 3.1. Under the assumptions (1.3)-(1.4) and (H1), the Cauchy problem

(1.1)-(1.2) has a unique C1 solution (w(t, x), z(t, x)) in the domain D(t0)
4
= {(t, x)|

0 ≤ t < t0,−∞ < x <∞}. Moreover,

lim sup
t↗t0

{‖wx(t, ·)‖C0 + ‖zx(t, ·)‖C0} =∞.(3.3)

Lemma 3.1 implies that t0 is just the blow-up time, i.e., the life span of the C1

solution of the Cauchy problem (1.1)-(1.2). There are only two possibilities:
(i) the solution blows up only at (t0, +∞) or (t0, −∞) or (t0, ±∞);

(ii) the solution blows up at certain points (t0, x), where x ∈ R.
Since possibility (i) is an extreme case, in this paper we do not consider it. In order
to avoid this possibility, we furthermore assume that there exists at least one point
(α0, β0) ∈ J−1(0) such that t(α0, β0) = t0, namely,

J−1(0) ∩ t−1(t0) 6= ∅.(H2)

Remark 3.1 (Discussion of hypothesis (H2)). (H2) is a very general and weak as-
sumption. For example, it is easy to show that if the initial data is periodic, or has
compact support, or satisfies limx→±∞{w′0(x), z′0(x)} → 0, then the assumption
(H2) is automatically valid. On the other hand, if we do not require (H2), then we
can construct a counterexample such that the blow-up points of the solution are
(t0, ±∞) instead of (t0, x), where x is an arbitrary real number. So the assumption
(H2) is essential. That is to say, if we do not assume (H2), then the blow-up time
may still be t0, but the solution does not blow up at any point (t0, x).

Let

S =
{

(t0, x)
∣∣ x = x(α, β), ∀ (α, β) ∈ J−1(0) ∩ t−1(t0)

}
.(3.4)

By (H2), there exists at least one point (t0, x0) such that

(t0, x0) ∈ S 6= ∅,(3.5)

where t0 = t (α0, β0) , x0 = x (α0, β0), with (α0, β0) ∈ J−1(0) ∩ t−1(t0).
In Theorem 3.2 we will show that the derivatives of a solution (w(t, x), z(t, x))

blow up at (t0, x) if and only if (t0, x) ∈ S. Therefore, S is called the set of all
blow-up points on t = t0. Obviously, such blow-up points need not be unique.

For an arbitrary point (t0, x0) ∈ S, it follows from the definition of S that there
exists at least one point (α0, β0) such that (α0, β0) ∈ J−1(0) ∩ t−1(t0) ∩ x−1(x0).
Such a point (α0, β0) is called the preimage of the blow-up point (t0, x0). Clearly,
the preimage of (t0, x0) need not be unique.

Theorem 3.1. For any fixed point (t0, x0) ∈ S, there exist two real numbers αmin

and αmax, αmin ≤ αmax (resp. βmin and βmax, βmin ≤ βmax) such that all fast
(resp. slow) characteristics x = x+(t, α) (resp. x = x−(t, β)) reach (t0, x0) when
t ↗ t0, where t ∈ [0, t0) and α ∈ [αmin, αmax] (resp. β ∈ [βmin, βmax]). Moreover,
any preimage (α0, β0) of (t0, x0) has the following properties:

1) α0 ∈ [αmin, αmax], β0 ∈ [βmin, βmax];

2) J(α, β) < 0, ∀ (α, β) ∈ {(α, β) |α0 ≤ α ≤ β ≤ β0 } \ {(α0, β0)}.

We refer to x = x+(t, αmax) (resp. x = x+(t, αmin)) as the rightmost (resp. left-
most) fast characteristic passing through (t0, x0), and to x = x−(t, βmax) (resp.
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x = x−(t, βmin)) as the rightmost (resp. leftmost) slow characteristic passing
through (t0, x0).

Proof of Theorem 3.1. For any fixed point (t, x0) (where t ∈ [0, t0)), we can draw
a unique fast characteristic x = x+(s, α(t)), where α(t) is the x-coordinate of the
intersection point of this characteristic with the x-axis. It is easy to show that
{α(t)} is bounded and strictly decreasing when t ↗ t0. Therefore, limt↗t0 α(t)
exists; we denote it by α. Obviously, x = x+(s, α) (where s ∈ [0, t0)) is a fast
characteristic passing through (t0, x0). Such fast characteristics need not be unique,
because we can draw them in other ways. Defining the maximum (resp. minimum)
of all such α as αmax (resp. αmin)3, we can easily prove that αmax and αmin are
just the desired real numbers. In a similar way, we can define βmax and βmin.

The rest of the proof is obvious.

Theorem 3.2. Under the assumptions (1.3)-(1.4) and (H1), the C1 solution (w, z)
of the Cauchy problem (1.1)-(1.2) must blow up in a finite time, and the life span
of the solution is just t0. Furthermore, if (H2) is assumed, then S 6= ∅, and it is
the set of all blow-up points on the line t = t0; that is to say, the solution blows
up at (t0, x) if and only if (t0, x) ∈ S. More precisely, for any fixed (t0, x0) ∈ S
there exists at least one preimage (α0, β0) such that either (a) xα(α0, β0) = 0—then
along a fast characteristic x = x+(t, α), where α ∈ [αmin, αmax],

wx(t, x) −→ −∞ as t↗ t0;(3.6)

or (b) xβ(α0, β0) = 0—then along a slow characteristic x = x−(t, β), where β ∈
[βmin, βmax],

zx(t, x) −→ −∞ as t↗ t0.(3.7)

For any fixed β ∈ R, we consider the characteristic x = x−(t, β) passing through
(0, β), where t ∈ [0, t0). Passing through any point (t, x−(t, β)) on x = x−(t, β), we
draw a unique fast characteristic and denote the intersection point of this charac-
teristic with the x-axis by (0, α). Then

t = t(α, β), x−(t, β) = x(α, β), ∀ (α, β) ∈ Ω(t0),(3.8)

where (t(α, β), x(α, β)) is the C1 solution of the Cauchy problem (2.7)-(2.8) and

Ω(t0)
4
= {(α, β) |α ≤ β, t (α, β) < t0 } .

In order to prove Theorem 3.2, we need the following lemma.

Lemma 3.2. We have
∂x−(t, β)

∂β
=
(

1− λ−(w0(α), z0(β))
λ+(w0(α), z0(β))

)
xβ(α, β), ∀ (α, β) ∈ Ω(t0).(3.9)

Similarly,

∂x+(t, α)
∂α

=
(

1− λ+(w0(α), z0(β))
λ−(w0(α), z0(β))

)
xα(α, β), ∀ (α, β) ∈ Ω(t0).(3.10)

Proof. Differentiating the second equality in (3.8) with respect to β gives

∂x−(t, β)
∂β

+
dx−(t, β)

dt

∂t(α, β)
∂β

=
∂x(α, β)
∂β

.(3.11)

3(2.5) guarantees that αmax and αmin are finite real numbers.
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Noting (2.3), we obtain from (3.11) that

∂x−(t, β)
∂β

+ λ−(w0(α), z0(β))
∂t(α, β)
∂β

=
∂x(α, β)
∂β

,(3.12)

where we have made use of the fact that w is a constant along any fixed fast
characteristic; in the present situation, w(t, x−(t, β)) = w0(α). Then, using the
second equation in (2.7), we get the desired (3.9) immediately.

The proof of (3.10) is similar. This completes the proof.

Proof of Theorem 3.2. The first part of Theorem 3.2 is just the conclusion of
Lemma 3.1. By (3.5), the fact that S 6= ∅ is obvious under the assumption (H2).

We prove that for any fixed (t0, x0) ∈ S, the derivatives of the solution must
blow up at this point.

As before, let (α0, β0) be a preimage of (t0, x0). Noting (1.3) and (2.9) and using
the fact that J(α0, β0) = 0, we have

xα (α0, β0) = 0 or xβ (α0, β0) = 0.

We now prove (3.7) under the assumption that xβ (α0, β0) = 0.
As a matter of fact, we have (see §2 in Chapter 2 of [14], or [9])

∂x− (t, β)
∂β

= eA(t)

(
1 + z′0 (β)

∫ t

0

∂λ−
∂z

(w (τ, x− (τ, β)) , z0 (β)) e−A(τ)dτ

)
,

(3.13)

where A(t) = H− (w (t, x− (t, β)) , z0 (β)) − H− (w0 (β) , z0 (β)); here H−(w, z) is
defined by

∂H−(w, z)
∂w

=
1

λ−(w, z)− λ+(w, z)
∂λ−(w, z)

∂w
.

If xβ (α0, β0) = 0, then, using (3.9), we obtain that, along x = x−(t, β0),

∂x− (t, β)
∂β

∣∣∣∣
β=β0

−→ 0 as t↗ t0,(3.14)

and then, using (3.13), we observe that z′0(β0) < 0. Moreover, by contradiction we
can prove that

z′0(β) < 0, ∀ β ∈ [βmin, βmax].(3.15)

In fact, if (3.15) is not valid, then there exists at least one point β? ∈ [βmin, βmax]4

such that z′0(β?) ≥ 0. Thus, for any given, sufficiently small ε > 0, there exists a
βε ∈ [βmin, βmax] such that z′0(β) ≥ −ε, ∀ β ∈ [βε, β?], where, without loss of
generality, we assume that βε < β?. Then it follows from (3.13) that

∂x− (t, β)
∂β

≥ µ1 > 0, ∀ β ∈ [βε, β?], ∀ t ∈ [0, t0),

where µ1 is a constant independent of t and β but depending on ε. Hence,

x−(t, β?)− x−(t, βε) ≥ µ1(β? − βε) > 0, ∀ t ∈ [0, t0).

This contradicts the conclusion of Theorem 3.1.

4Here we assume that βmin < βmax, since the desired conclusion is obvious if βmin = βmax.
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We next prove that

∂x−(t, β)
∂β

−→ 0 as t↗ t0, ∀ β ∈ [βmin, βmax].(3.16)

Let (α, β) be the characteristic coordinates corresponding to (t, x−(t, β)). Noting
that w(t, x−(t, β)) = w0(α), we obtain from (2.3) that

dx− (t, β)
dt

= λ− (w0(α), z0(β)) , ∀ t ∈ [0, t0), ∀ β ∈ R.(3.17)

Differentiating (3.17) with respect to β and noting (1.4), (3.15), we get

d

dt

(
∂x−(t, β)

∂β

)
=
∂λ−
∂z

z′0(β) < 0, ∀ t ∈ [0, t0), ∀ β ∈ [βmin, βmax].(3.18)

Moreover, it is easy to see that

∂x−(t, β)
∂β

> 0, ∀ t ∈ [0, t0), ∀ β ∈ R.(3.19)

(3.18)-(3.19) imply that limt↗t0
∂x−(t,β)

∂β exists and is non-negative for all β ∈
[βmin, βmax]. As before, by contradiction we can prove that limt↗t0

∂x−(t,β)
∂β = 0.

This proves (3.16). It is well known that (3.16) implies (3.7).
Similarly, we can prove (3.6) under the assumption that xα (α0, β0) = 0.
We finally show that for any fixed point (t0, y) /∈ S, there exists a small half-ball

Oε∗(t0,y) =
{

(t, x)
∣∣∣ t < t0,

√
|t− t0|2 + |x− y|2 < ε∗

}
, centered at (t0, y), such that

|wx(t, x)| + |zx(t, x)| ≤M, ∀ (t, x) ∈ Oε∗(t0,y),(3.20)

where ε∗ > 0 is a small number and M > 0 is a constant independent of (t, x).
By the definition of S (see (3.4)), if (t0, y) /∈ S, then there exists a ball Bε̃(t0,y) ={

(t, x)
∣∣∣√|t− t0|2 + |x− y|2 ≤ ε̃

}
such that

J(α, β) 6= 0, ∀ (α, β) ∈ Π−1
(
Bε̃(t0,y)

)
,(3.21)

where ε̃ > 0 is a small number, (α, β) are the characteristic coordinates corre-
sponding to (t, x) ∈ Bε̃(t0,y), and Π−1 = Π−1(t, x) stands for the inverse mapping
of Π = Π(α, β) defined by the C1 solution (t(α, β), x(α, β)) of the Cauchy problem
(2.7)-(2.8). Hence, there is another small positive number ε∗ < ε̃ such that

xα(α, β) ≥ µ2 > 0, xβ(α, β) ≥ µ2 > 0, ∀ (α, β) ∈ Π−1
(
Oε∗(t0,y)

)
,(3.22)

where µ2 is a constant independent of (α, β). Using (1.3) and Lemma 3.2, we have

∂x+(t, α)
∂α

≥ µ3 > 0,
∂x−(t, β)

∂β
≥ µ3 > 0, ∀ (α, β) ∈ Π−1

(
Oε∗(t0,y)

)
,(3.23)

where µ3 is a constant independent of (α, β) and t. It is well known that (3.23)
implies (3.20). This completes the proof of Theorem 3.2.

Remark 3.2. By (2.4) and (3.20), we can extend the C1 solution (w(t, x), z(t, x))
to a small neighbourhood of (t0, y), where (t0, y) /∈ S. This means that the C1

solution does not blow up at any point (t0, y) /∈ S.
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We remark here that, in general, the fast (resp. slow) characteristics passing
through a blow-up point are not unique. However, if we add some suitable assump-
tions, then we can get the uniqueness of such characteristics.

Theorem 3.3. If wx(t, x) (resp. zx(t, x)) is uniformly bounded in the domain
D(t0), then there exists a unique fast (resp. slow) characteristic passing through any
point (t, x) ∈ D(t0). In particular, if wx(t, x) (resp. zx(t, x)) is uniformly bounded
in N(t0,x∗)∩D(t0), then there exists a unique fast (resp. slow) characteristic passing
through (t0, x∗), where x∗ ∈ R and N(t0,x∗) is a neighbourhood of (t0, x∗).

Theorem 3.3 can be easily proved by contradiction, but we leave this to the
reader.

4. Blow-up of cusp type

In this section, under appropriate assumptions we prove that the solution of the
Cauchy problem (1.1)-(1.2) is a blow-up solution of cusp type. Then, based on this,
we construct the envelope of characteristics of the same family.

Suppose that λ±(w, z) ∈ C4 and w0(x), z0(x) ∈ C4. Suppose furthermore that
there exists a point (α0, β0) ∈ J−1(0) ∩ t−1(t0) such that

xα(α0, β0) > 0, xβ(α0, β0) = 0,(4.1)

xββ(α0, β0) = 0, xβββ(α0, β0) > 0.(4.2)

Remark 4.1. By (1.3) and (2.7), (4.1) and (4.2) are respectively equivalent to

tα(α0, β0) < 0, tβ(α0, β0) = 0,

tββ(α0, β0) = 0, tβββ(α0, β0) > 0.

Remark 4.2. The hypothesis (4.1) implies that zx(t, x) blows up at (t0, x0), but
wx(t, x) does not blow up. We will discuss the case when two Riemann invariants
blow up simultaneously at a point sometime in the future. In this case we believe
that two shocks will grow out of the blow-up point if system (1.1) is of a form of
conservation laws.

When the initial data (1.2) is of simple wave type, the hypotheses (4.1)-(4.2) can
be expressed explicitly in terms of the initial data.

Proposition 4.1. If w0(x) ≡ w0 = constant, then (4.1)-(4.2) are equivalent to
g′(β) taking its global minimum at β0 with

g′(β0) < 0, g′′(β0) = 0 and g′′′(β0) > 0,(H)

where g(β) = λ−(w0, z0(β)).

Proof. Without loss of generality, we may suppose that w0 ≡ 0. Hence, on the
existence domain of a classical solution of the Cauchy problem (1.1)-(1.2), we have
w(t, x) ≡ 0. Moreover, the slow characteristic passing through any fixed point (0, β)
is a straight line:

x = β + g(β)t,(4.3)

where g(β) = λ− (0, z0(β)); moreover, on (4.3) we have z = z0(β).
Differentiating (4.3) with respect to β twice gives

xββ = g′′(β)t + 2g′(β)tβ + g(β)tββ ,(4.4)
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and then differentiating the second equation in (2.7) with respect to β yields

xββ =
∂λ+

∂z
(0, z0(β)) z′0(β)tβ + λ+ (0, z0(β)) tββ.(4.5)

Substituting (4.5) into (4.4) leads to[
1− λ−

λ+

]
xββ = g′′(β)t+

[
2g′(β) − λ−

λ+

∂λ+

∂z
z′0(β)

]
tβ ,(4.6)

where λ± = λ±(0, z0(β)).
Step I: (4.1)-(4.2) =⇒ (H). By Theorem 3.2, the assumption that xβ(α0, β0) =

0 implies that zx(t, x) must blow up at (t0, x0), but it does not blow up for any
t < t0. Noting (4.3), we see that g′(β) must take its global minimum at β0.
Moreover, combining (1.4) and (3.15) gives g′(β0) < 0 immediately.

We now prove g′′(β0) = 0 and g′′′(β0) > 0.
Using (4.1)-(4.2) and noting that t0 = t (α0, β0) > 0, we obtain from (4.6) that

g′′(β0) = 0.
Similarly, we can prove that g′′′(β0) > 0.

Step II: (H) =⇒ (4.1)-(4.2).
Since w ≡ 0, we observe that the Cauchy problem (1.1)-(1.2) can be reduced to

∂tz + λ−(0, z)∂xz = 0, z(0, x) = z0(x)

on the existence domain of a classical solution. Since g′(β) takes its global minimum
at β0 and g′(β) < 0, by the classical theory for a single equation, we have

∂x− (t, β)
∂β

> 0, ∀ t ∈ [0, t0), ∀ β ∈ R,

∂x− (t, β)
∂β

∣∣∣∣
β=β0

−→ 0 as t↗ t0,

(4.7)

where t0 = − (g′(β0))−1 and x−(t, β) = β+λ−(0, z0(β))t. Thus, zx = zx(t, x) blows

up at (t0, x0)
4
= (t0, β0+ g(β0)t0), but it does not blow up for any t < t0.

Still consider the Cauchy problem (1.1)-(1.2). Since w ≡ 0, by Theorem 3.3 we
can draw a unique fast characteristic passing through the point (t0, x0). Choose
the characteristic coordinates as in §2 and take the x-coordinate of the intersection
point of the fast characteristic passing through (t0, x0) with the x-axis as α0. Noting
(4.7) and using (3.9), we get that xβ(α0, β0) = 0. On the other hand, since w does
not blow up, we know that xα(α0, β0) > 0. Moreover, noting that g′′(β0) = 0 and
using (1.3), we obtain from (4.6) that xββ(α0, β0) = 0.

Similarly, using the fact that g′′′(β0) > 0, we can prove that xβββ(α0, β0) > 0.
This proves (4.1)-(4.2).

Remark 4.3. For the p-system, (H) is nothing but the assumption used in [13].

By (4.1)-(4.2), there exists a full neighbourhood O of (α0, β0) such that

xα(α, β) > 0 (equiv. tα(α, β) < 0), xβββ(α, β) > 0, ∀ (α, β) ∈ O.(4.8)

Let O0 be a small ball centered at (α0, β0) and satisfying O0 ⊆ O. In what follows,
we investigate the behaviour and structure of the set J−1(0) ∩ O0, i.e., the set

Cz
4
= {(α, β) |(α, β) ∈ O0, xβ(α, β) = 0}.
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Theorem 4.1. Suppose that (1.3)-(1.4) and (4.1)-(4.2) hold. Then in O0, the
singular points of Π form a smooth curve which can be defined by an explicit function
α = α(β) with the following properties:

(1) α(β0) = α0;

(2) α = α(β) is strictly concave, and takes its maximum at β0;

(3) singular points (α, β) ( 6= (α0, β0)) are fold points, and (α0, β0) is a cusp point.

Proof. Differentiating (2.9) with respect to α gives

Jα =
(

1
λ−
− 1
λ+

)
xα(xβ)α on Cz.(4.9)

Moreover, differentiating the first equation in (2.7) with respect to β yields(
1− λ−

λ+

)
(xβ)α =

∂λ−
∂z

z′0(β)tα on Cz.(4.10)

Noting (1.3)-(1.4) and using (3.15) and (4.8), from (4.10) we get

(xβ)α > 0 on Cz.(4.11)

Then, noting (1.3) and (4.8), we obtain from (4.9) that

Jα < 0 on Cz .(4.12)

This implies that the mapping Π is good in O0. Therefore, the singular points of Π
define a smooth curve in O0 (see [20]). Let us parametrize the curve J(α, β) = 0 by
Γ(σ) = (α(σ), β(σ)). By (4.12), the curve can be expressed by an explicit function
denoted by α = α(β) with α(β0) = α0. Obviously,

xβ (α(β), β) = 0 (equivalently, tβ (α(β), β) = 0).(4.13)

Differentiating (4.13) with respect to β and noting (4.2) and (4.11), we obtain

α′ (β0) = 0 and α′′ (β0) < 0.(4.14)

This shows that α = α (β) is strictly concave in O0 and takes its maximum at β0,
provided that the ball O0 is suitably small.

By a direct calculation, we have

d

dβ
(t (α (β) , β) , x (α (β) , β)) 6= (0, 0) , ∀ β 6= β0,

d

dβ
(t (α (β) , β) , x (α (β) , β))

∣∣∣∣
β=β0

= (0, 0) ,

d2

dβ2
(t(α(β), β), x(α(β), β))

∣∣∣∣
β=β0

6= (0, 0).

(4.15)

(4.15) implies that (α(β), β) (β 6= β0) is a fold point of the mapping Π, while (α0, β0)
is a cusp point. This proves the theorem.

Remark 4.4. Theorem 4.1 shows that under the hypotheses (1.3)-(1.4) and (4.1)-
(4.2), the solution of the Cauchy problem (1.1)-(1.2) is a blow-up solution of cusp
type, according to the terminology of [1]. Moreover, Theorem 4.1 can be viewed as
an improvement of Theorem 3.2 in Chapter IV of [1].
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Figure 1. Smooth curve Cz = Clz ∪Crz formed by singular points
of mapping Π

From results of Whitney [20] and Theorem 3.3, as two corollaries of Theorem
4.1 we have

Corollary 4.1. Suppose that λ±(w, z) are C∞ functions of (w, z), and w0(x) and
z0(x) are C∞ functions of x with bounded C1 norm. Suppose furthermore that
(1.3)-(1.4) and (4.1)-(4.2) hold. Then there exist smooth coordinate systems (ᾱ, β̄)
and (t̄, x̄), near (α0, β0) and (t0, x0) respectively, such that the mapping Π takes the
form x̄ = ᾱβ̄ − β̄3, t̄ = ᾱ.

Corollary 4.2. Under the hypotheses (1.3)-(1.4) and (4.1)-(4.2), there exists a
unique fast (resp. slow) characteristic passing through (t0, x0) ∈ S.

Let Clz (resp. Crz ) be the part of the curve α = α(β) to the left (resp. right)
of (α0, β0) in O0 (see Fig. 1). Obviously, Cz = Clz ∪ Crz , and Clz (resp. Crz ) is
the strictly increasing (resp. decreasing) part. Furthermore, let γl (resp. γr) be
the image of Clz (resp. Crz ) under the mapping Π. In what follows, we consider the
behaviour of γl and γr in the (t, x)-plane.

To do so, we introduce

O+
0 = {(α, β) |(α, β) ∈ O0, α > α (β)} ,
O−0 = {(α, β) |(α, β) ∈ O0, α < α (β)} ,

(4.16)

and denote the intersection points of the curve α = α(β) with the boundary of O0

by Al (α (βl) , βl) and Ar (α (βr) , βr) respectively (see Fig. 1).

Lemma 4.1. We have
tα(α, β) < 0 (equivalently, xα(α, β) > 0) in O0,

tβ(α, β) > 0 (equivalently, xβ(α, β) > 0) in O+
0 ,

tβ(α, β) < 0 (equivalently, xβ(α, β) < 0) in O−0 .
(4.17)

Proof. (4.17)1 comes from (4.8) directly. It remains to prove (4.17)2-(4.17)3.
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By (2.7), we can easily get

(tβ)α (α, β) =
1

λ− − λ+

∂λ+

∂w
w′0(α)tβ +

1
λ+ − λ−

∂λ−
∂z

z′0(β)tα.(4.18)

Moreover, from (4.13) we have

tβ (α (β) , β) = 0, ∀ β ∈ [βl, βr] .(4.19)

For any fixed β ∈ [βl, βr], we solve the initial value problem (4.18)-(4.19) and obtain

tβ(α, β) =
∫ α

α(β)

G(ζ, β) expQ(ζ, α, β)dζ, ∀ (α, β) ∈ O0,(4.20)

where

Q(ζ, α, β)
4
=
∫ α

ζ

1
λ− (w0(ξ), z0(β)) − λ+ (w0(ξ), z0(β))

∂λ+

∂w
(w0(ξ), z0(β))w′0(ξ)dξ

and

G(α, β)
4
=

1
λ+ − λ−

∂λ−
∂z

z′0(β)tα.

Noting (1.3)-(1.4), (3.15) and (4.17)1, we observe that G(α, β) > 0, ∀ (α, β) ∈ O0.
Hence, from (4.20) we obtain (4.17)2-(4.17)3 immediately. The proof is complete.

Moreover, it follows from (4.17)1 that, in O0, t (α, β) = const. (resp. x (α, β) =
const.) can be explicitly expressed by α = αt(β) (resp. α = αx(β)). Using Lemma
4.1, we can easily prove

Lemma 4.2. The curve t (α, β) = const. is increasing in O+
0 and decreasing in

O−0 , while the curve x (α, β) = const. is decreasing in O+
0 and increasing in O−0 .

Since γl (resp. γr) is the image of Clz (resp. Crz ) under the mapping Π, it is easy
to see that γl (resp. γr) is defined by

x = x (α (β) , β) , t = t (α (β) , β) , ∀ β ∈ [βl, β0] (resp. ∀ β ∈ [β0, βr]);(4.21)

in particular, x0 = x (α (β0) , β0) , t0 = t (α (β0) , β0). Noting (4.14), (4.17)1 and
differentiating (4.21) with respect to β, we obtain

dx

dβ
> 0 and

dt

dβ
< 0, ∀ β ∈ (βl, β0) ,

dx

dβ
< 0 and

dt

dβ
> 0, ∀ β ∈ (β0, βr) .

(4.22)

(4.22) implies that γl and γr are strictly decreasing in the (t, x)-plane. Let P0 be
(t0, x0). Obviously, the lowest and rightmost point of γl and γr is just P0.

On the other hand, noting (4.22) and using the implicit function theorem, we
can solve for β from t = t (α (β) , β) when β ∈ (βl, β0) (resp. β ∈ (β0, βr)), and
denote it by β = βl (t) (resp. β = βr (t)), where t ∈ (t0, t (α (βl) , βl)) (resp.
t ∈ (t0, t (α (βr) , βr))). Substituting it into x = x (α (β) , β), we get an explicit
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Figure 2. Envelope of slow characteristics

formula for γl (resp. γr), and denote it by x = xl(t) (resp. x = xr(t)), where
t ∈ (t0, t (α (βl) , βl)) (resp. t ∈ (t0, t (α (βr) , βr))). By a direct calculation, we have

d2xl (t)
dt2

> 0, ∀ t ∈ (t0, t (α (βl) , βl)) ,

d2xr (t)
dt2

< 0, ∀ t ∈ (t0, t (α (βr) , βr)) .
(4.23)

(4.23) implies that γl is strictly convex and γr is strictly concave.
Choose a point (α1, β1) on Clz , and let x1 be x (α1, β1) and t1 be t (α1, β1). We

draw two curves: t (α, β) = t1 and x (α, β) = x1 passing through (α1, β1). Let
(αj , βj) (j = 2, 3) be the intersection points of Crz with t (α, β) = t1 and x (α, β) =
x1 respectively (see Fig. 1). As in Fig. 1, we see that β2 > β3. Then using (4.22)2,
we have

x1 = x3
4
= x (α3, β3) > x2

4
= x (α2, β2) ,

t3
4
= t (α3, β3) < t2

4
= t (α2, β2) = t1.

(4.24)

(4.24) implies that γr lies below γl, where Ki = (t (αi, βi) , x (αi, βi)) (i = 1, 2, 3).
See Fig. 2. Summarizing the above discussion, we have

Theorem 4.2. Under the assumptions (1.3)-(1.4) and (4.1)-(4.2), γl and γr are
strictly decreasing in the (t, x)-plane, and (t0, x0) is the lowest and rightmost point
of γl and γr; moreover, γl is strictly concave, while γr is strictly convex and lies
below γl.

Remark 4.5. γl and γr can be regarded as two sheets of the envelope with its cusp
at (t0, x0) formed by slow characteristics. Moreover, Theorem 4.2 shows that under
the hypotheses (1.3)-(1.4) and (4.1)-(4.2), the formation of a singularity of the
classical solution of the Cauchy problem (1.1)-(1.2) is due to the envelope of slow
characteristics and the singularity occurs at the starting point of the envelope, i.e.,
the point with minimum t-value on the envelope.

In what follows we introduce the triple-valued solution and the artificial solution
of the Cauchy problem (1.1)-(1.2) in a neighbourhood of (t0, x0).

Let R0 be the point (α0, β0). Choose a point R3 ∈ Crz , and a point R1 to the
right side of R3 in O0 and on the line α = α0, such that the intersection point R2

of the vertical line passing through R1 and the horizontal line passing through R3

also lies in O0. Let D+ be the region bounded by Crz , α = α0, the vertical segment
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Figure 3. Points Ri (i = 0, 1, . . . , 8, l, r) in (α, β)-plane

R1R2 and the horizontal segment R3R2. D− can be defined in a similar way (see
Fig. 3). Moreover, let D− =

{
(α, β)

∣∣(α, β) ∈ O−0 , max (α (βl) , α (βr)) ≤ α ≤ α0

}
.

In Fig. 3 we have assumed that α (βl) ≥ α (βr) and have denoted the intersection
point of Crz with the horizontal line passing through point Al by A∗l . Finally, choose
a point R7 (resp. R8) to the upside of R1 (resp. R4) and on the vertical line passing
through R1 (resp. R4), such that the region R1R7R8R4, denoted by D+, is still in
O0 (see Fig. 3).

Let Π = Π± (α, β) and Π = Π± (α, β) be the restrictions of the solution (t, x) =
(t(α, β), x(α, β)) of Cauchy problem (2.7)-(2.8) to D± and D± respectively, and let
Pi be Π(Ri) (i = 1, · · · , 8) and P+, P− be Π(A∗l ), Π(Al) respectively (see Fig. 4).
In determining the positions of Pi in the (t, x)-plane, we use the fact that the image
of α = const. is described by dx

dt = λ+ (w0(α), z0(β)) > 0 and then is an increasing
curve in the (t, x)-plane. Similarly, the image of β = const. is a decreasing curve. It
easy to see that P0P1P2P3 = Π+(D+), P0P4P5P6 = Π−(D−), P0P

+P− = Π−(D−)
and P1P4P8P7 = Π+(D+). Since the inverse mappings of Π = Π± (α, β) and Π =
Π± (α, β) exist on their corresponding domains, we may construct the C4 solution of
system (1.1) in the regions Π± (D±) and Π± (D±) respectively, denoted by (w, z) =
(w±(t, x), z±(t, x)) and (w, z) = (w±(t, x), z±(t, x)) respectively. Moreover, it is
easy to show that (w+(t, x), z+(t, x)) and (w+(t, x), z+(t, x)) can be extended to the
curve P0P1 except for the point P0 and connected to each other with C4 regularity.
(w+(t, x), z+(t, x)) and (w−(t, x), z−(t, x)) have a similar property on the curve
P0P4 except P0. As in Fig. 4, let Ω0 be the open region bounded by γr, γl and the
curve P2P3. Clearly, the “solution” constructed in the previous way is triple-valued
in Ω0. Such a “solution” is called the triple-valued solution of the Cauchy problem
(1.1)-(1.2). However, we cannot construct a shock growing out of the point (t0, x0)
by solving the initial value problem for a nonlinear ODE as in the case of a single
conservation law, since if we ask this ODE to be given by one of the Rankine-
Hugoniot conditions with (w±(t, x), z±(t, x)) as the values on both sides, another
one of the Rankine-Hugoniot conditions is not satisfied generally. In §5 we will
discuss this problem in a different way. However, here we can construct at least one
artificial solution (w, z) in a neighbourhood of (t0, x0) in the following way, gluing
together the piecewise solutions:

(1) (w, z) = (w+(t, x), z+(t, x)) in the region P1P4P8P7\ {P0};
(2) (w, z) = (w−(t, x), z−(t, x)) in the region Ω−\ {P0}, where Ω− is the region

bounded by the curves P0P4, P4P5, P5P6 and P0P∗, in which P0P∗ is an
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Figure 4. Images of Ri in (t, x)-plane

arbitrary strictly decreasing C1 curve in the region P+P0P
− and satisfies

P0P∗ ∩ P0P
− = P0P∗ ∩ P0P

+ = {P0} (see Fig. 4);
(3) (w, z) = (w+(t, x), z+(t, x)) in the region Ω+\ {P0}, where Ω+ is the region

bounded by the curves P0P1, P1P2, P2P3 and P0P∗.

Obviously, such an artificial solution is a piecewise C4 function which satisfies
the system (1.1) in a neighbourhood of (t0, x0) except for the curve P0P∗. Moreover,
when t < t0 or x > x+(t, α0), the artificial solution is nothing but the C4 solution
of the Cauchy problem (1.1)-(1.2). Thus we have

Theorem 4.3. Under the hypotheses (1.3)-(1.4) and (4.1)-(4.2), the Cauchy prob-
lem (1.1)-(1.2) admits a triple-valued solution in a neighbourhood of (t0, x0). Par-
ticularly, for any fixed C1 smooth curve P0P∗ ⊆ Ω0 there exists an artificial solution
of the Cauchy problem (1.1)-(1.2) in a neighbourhood of (t0, x0).

To conclude this section, we state the following theorem, whose standard proof
is left to the reader.

Theorem 4.4. Under the hypotheses (1.3)-(1.4) and (4.1)-(4.2), the solution
(w, z) of the Cauchy problem (1.1)-(1.2) satisfies the following estimates:

|w(t, x) − w(t0, x0)| ≤ k0 (|t− t0|+ |x− x0|) , ∀ (t, x) ∈ N#,

|wx(t, x)− wx(t0, x0)| ≤ k0 (|t− t0|+ |x− x0|) , ∀ (t, x) ∈ N#,

|z(t, x)− z(t0, x0)| ≤ k1

(
|t− t0|3 + |x− x0(t)|2

) 1
6 , ∀ (t, x) ∈ N#,

|zx(t, x)| ≤ k2

(
|t− t0|3 + |x− x0(t)|2

)− 1
3 , ∀ (t, x) ∈ N#\{(t0, x0)},

|zxx(t, x)| ≤ k3

(
|t− t0|3 + |x− x0(t)|2

)− 5
6 , ∀ (t, x) ∈ N#\{(t0, x0)},

where the ki (i = 0, 1, 2, 3) are positive constants independent of (t, x), x0(t) stands
for the slow characteristic passing through (0, β0), and N# denotes a small neigh-
bourhood of (t0, x0) with t ≤ t0.



FORMATION AND PROPAGATION OF SINGULARITIES 3171

5. Formation of shock

Consider the following Cauchy problem for a system of 2× 2 conservation laws:
∂u

∂t
+
∂f(u, v)
∂x

= 0,

∂v

∂t
+
∂g(u, v)
∂x

= 0,
(5.1)

t = 0 : u = u0(x), v = v0(x),(5.2)

where u, v are the unknown functions, f(u, v), g(u, v) ∈ C5(D) for some open
domain D in R2, u0(x), v0(x) ∈ C4(R) and their C1 norms are bounded.

Suppose the system (5.1) is strictly hyperbolic, that is, ∇(f, g)T has two real and
distinct eigenvalues. As in §1, we assume that

λ1(u, v) < 0 < λ2(u, v).(5.3)

Suppose furthermore that system (5.1) is genuinely nonlinear in the sense of Lax;
without loss of generality, we may assume that

∇λi(u, v) · ri(u, v) > 0 (i = 1, 2),(5.4)

where ri(u, v) is the right eigenvector corresponding to λi(u, v).
Introducing the Riemann invariants5 w = w(u, v) and z = z(u, v), we may

rewrite (5.1) as a system with the form (1.1) on any existence domain of smooth
solution, and rewrite (5.2) as a condition with the form (1.2). In the new system
(1.1) w, z are the new unknown functions and λ±(w, z) are smooth functions of
(w, z) satisfying λ−(w(u, v), z(u, v)) = λ1(u, v) and λ+(w(u, v), z(u, v)) = λ2(u, v),
while in (1.2) w0(x), z0(x) are C4 functions with bounded C1 norm. Obviously, (5.3)
and (5.4) are equivalent to (1.3) and (1.4) respectively, since λi, ∇λi · ri (i = 1, 2)
are invariants under any invertible C1 transformation of (u, v).

As before, let (t(α, β), x(α, β)) be the solution of the Cauchy problem (2.7)-(2.8),
(t0, x0) an arbitrary blow-up point in S and (α0, β0) a preimage of (t0, x0). Suppose
furthermore that (4.1)-(4.2) hold.

It is well known that the following problems are very interesting but quite open:
What kinds of singularities will appear at the blow-up point (t0, x0) ∈ S? How do
the singularities (in particular, shocks) grow out of nothing? In this section, under
the hypotheses (5.3)-(5.4) and (4.1)-(4.2) we study these problems. The main result
is the following.

Theorem 5.1. Under the hypotheses (5.3)-(5.4) and (4.1)-(4.2), the Cauchy prob-
lem (5.1)-(5.2) has a unique classical discontinuous solution (u(t, x), v(t, x)) in a
neighbourhood of the blow-up point (t0, x0): the solution contains a shock x =
ϕ(t) (t ≥ t0) and a weak discontinuity x = ψ(t) (t ≥ t0) issuing from (t0, x0),
and (u(t, x), v(t, x)) is C4 smooth away from the curves x = ϕ(t) and x = ψ(t).
See Fig. 5.

Remark 5.1. The weak discontinuity mentioned above means that the solution is
continuous across x = ψ(t), but its derivatives can be discontinuous. The weak
discontinuity must propagate along the corresponding characteristic.

5As in Remark 1.1, the Riemann invariants always exist at least in a local domain.
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Figure 5. Shock and weak discontinuity issuing from (t0, x0)

Remark 5.2. By Proposition 4.1, if (5.1) is the p-system, then Theorem 5.1 gives
Lebaud’s result on the existence of a classical discontinuous solution in a neigh-
bourhood of a blow-up point (see [13]). However, we do not need the assumption
in [13] that one of the Riemann invariants is a constant.

In order to prove Theorem 5.1, it suffices to solve a kind of free boundary problem
with one characteristic boundary on an angular domain. The difficulty of this kind
of free boundary problem is that one boundary condition is not Lipschitz continuous
at the angular point. The key idea to overcome the difficulty is as follows. We first
solve a corresponding free boundary problem in the (α, β)-plane. This problem is
good: the system is linear, the boundary conditions are Lipschitz, but the solution’s
Jacobian vanishes at the angular point (this corresponds to the phenomenon that
the solution of the original problem blows up at the angular point in the (t, x)-
plane). Then we prove the solution’s Jacobian does not vanish in the angular
domain, except at the angular point, and then by the inverse mapping theory, we
construct the solution of the original problem.

5.1. Some basic facts on classical discontinuous solutions. In order to prove
Theorem 5.1, we first review some basic facts on classical discontinuous solutions
for system (5.1) (see [12]).

If there exist a C1 curve x = x(t) and a piecewise C1 vector-valued function
(u, v) = (u(t, x), v(t, x)) in some open region R in R+ ×R such that, on both sides
of x = x(t), (u, v) = (u(t, x), v(t, x)) satisfies system (5.1) in the classical sense,
while, on x = x(t), the Rankine-Hugoniot condition

s[u] = [f(u, v)], s[v] = [g(u, v)](5.5)

and the Lax entropy condition

s < λ1(u−, v−), λ1(u+, v+) < s < λ2(u+, v+)(5.6)

hold, where s = x′(t), [•] denotes the jump of • across x = x(t), while •± are the
values of • on the right side and left side of x = ϕ(t) respectively. Such a vector-
valued function (u, v) = (u(t, x), v(t, x)) is called a classical discontinuous solution
of system (5.1) in the region R, and x = x(t) is called a slow shock.

Similarly, we can define a classical discontinuous solution of system (5.1) with a
fast shock in the region R.

In what follows, we only consider the case of the slow shock. For the case of the
fast shock, we may carry out a similar discussion.
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Using the Riemann invariants w and z, we may rewrite (5.5) as

dx(t)
dt

= H1(w−, z−, w+, z+), H2(w−, z−, w+, z+) = 0,(5.7)

where w± = w(u±, v±), z± = z(u±, v±), and Hi(w−, z−, w+, z+) (i = 1, 2) are C4

functions of (w−, z−, w+, z+). Meanwhile, in the Riemann invariants, (5.6) becomes

s < λ−(w−, z−), λ−(w+, z+) < s < λ+(w+, z+).(5.8)

The following lemma comes from Theorem 8.6 in [12].

Lemma 5.1. Under the hypotheses (5.3)-(5.4), if |[z]| is small, then

[w] = W (w±, z±) [z]3,(5.9)

where W = W (w±, z±) is a C4 function of (w±, z±).

Corollary 5.1. Under the hypotheses of Lemma 5.1,

w+ = W+ (w−, z±) ,(5.10)

where W+ = W+ (w−, z±) is a C4 function of (w−, z±).

Remark 5.3. In fact, under the assumptions of Lemma 5.1, (5.7)2, (5.9) and (5.10)
are all equivalent.

5.2. Proof of Theorem 5.1. It is well known that, if system (5.1) has a Ck

(k ≥ 1) solution on some open domain in R+×R, then the corresponding canonical
system in characteristic coordinates (α, β)

∂x

∂α
= λ−(w, z)

∂t

∂α
,

∂z

∂α
= 0,

∂x

∂β
= λ+(w, z)

∂t

∂β
,

∂w

∂β
= 0

(5.11)

also has a Ck (k ≥ 1) solution (t, x, w, z) = (t(α, β), x(α, β), w(α, β), z(α, β)) on the
corresponding domain in R× R. Conversely, if system (5.11) has a Ck (k ≥ 1) so-
lution (t, x, w, z) = (t(α, β), x(α, β), w(α, β), z(α, β)) with non-vanishing Jacobian

J =
∂(t, x)
∂(α, β)

6= 0,(5.12)

then, solving α, β from the relation (t, x) = (t(α, β), x(α, β)) and then substituting
them into (w, z) = (w(α, β), z(α, β)), we obtain a Ck solution of system (5.1) at
least in a local domain. System (5.11) has the following advantages:

(i) each equation contains only the derivatives of unknown functions with respect
to one independent variable α or β;

(ii) in the (α, β)-plane the characteristics are the straight lines: α = const. or
β = const.

By §4, system (5.11) has a C4 solution in the region R1R7R8R4, i.e., D+,
and in the region R0R4R5R6, i.e., D− (see Fig. 3). We denote the solutions in
D+ and D− by (t, x, w, z) = (t+(α, β), x+(α, β), w0(α), z0(β)) and (t, x, w, z) =
(t−(α, β), x−(α, β), w0(α), z0(β)) respectively. Moreover, we have

J(α, β) 6= 0, ∀ (α, β) ∈ Ď
+ ∪ D̆−,(5.13)

where Ď+ 4
= D+\{point R0} and D̆−

4
= D−\{curve R0R6}. Furthermore, sys-

tem (5.1) has a C4 solution on f and = respectively, where f denotes the region
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P1P4P8P7\ {point P0} and = stands for the domain P0P4P5P6\ {curve P0P6} (see
Fig. 4). We denote the solutions on f and = by (w, z) = (wr(t, x), zr(t, x)) and
(w, z) = (w−(t, x), z−(t, x)) respectively.

From now on, we image that there is a strictly decreasing C1 curve x = x(t) (t >
t0) issuing from the blow-up point (t0, x0) (i.e., x(t0) = x0), which is in the open
domain bounded by γl and γr (see Fig. 4, in which P0P∗ stands for x = x(t)). Let
♥(t0,x0) be the set {(t, x)| t0 < t ≤ t0 + δ0, x(t) ≤ x ≤ x+(t, α0)}, where δ0 > 0 is
a small number. In order to prove the existence in Theorem 5.1, it suffices to solve
the following free boundary problem with one characteristic boundary:

∂w

∂t
+ λ+(w, z)

∂w

∂x
= 0,

∂z

∂t
+ λ−(w, z)

∂z

∂x
= 0,

∀ (t, x) ∈ ♥(t0,x0);(5.14)

on the free boundary x = x(t) (t > t0), (5.7)-(5.8) hold, i.e.,

dx(t)
dt

= H1(w−, z−, w, z), H2(w−, z−, w, z) = 0,

x′(t) < λ−(w−, z−), λ−(w, z) < x′(t) < λ+(w, z);
(5.15)

on the characteristic boundary x = x+(t, α0) (t > t0), we have

w = w0(α0), z = zr(t, x).(5.16)

By Corollary 5.1, we may rewrite the second equality in (5.15) as

w = W+(w−(t, x), z−(t, x), z),(5.17)

where W+ = W+(w−, z−, z) is a C4 function of (w−, z−, z).
Unlike the usual free boundary problem, in (5.15)-(5.16) z−(t, x) and zr(t, x)

blow up as (t, x) → (t0, x0); that is, it is not Lipschitz continuous at (t0, x0). To
overcome this difficulty, we should ask the aid of system (5.11) and make use of the
advantages of system (5.11) sufficiently. Precisely speaking, we first solve a corre-
sponding free boundary problem for system (5.11) in the (α, β)-plane, then obtain
the solution of the problem (5.14)-(5.16) by means of the inverse of the mapping
defined by (t, x) = (t(α, β), x(α, β)), where t = t(α, β) and x = x(α, β) are the
first two components of the solution (t, x, w, z) = (t(α, β), x(α, β), w(α, β), z(α, β))
of the corresponding free boundary problem for system (5.11) in the (α, β)-plane.
In order to get the corresponding problem in the (α, β)-plane, we first assume that
there exists a smooth shock x = x(t) (t ∈ [t0, t0 +δ0]) such that the problem (5.14)-
(5.16) has a smooth solution (w, z) = (w(t, x), z(t, x)) on the domain ♥(t0,x0); then
we derive its corresponding form in the (α, β)-plane.

Suppose the problem (5.14)-(5.16) has a C4 solution (w, z) = (w(t, x), z(t, x))
on the domain ♥(t0,x0); then system (5.11) also admits a C4 solution, denoted

by (t, x, w, z) = (t+(α, β), x+(α, β), w+(α, β), z+(α, β)), on the domain ♠(α0,β0)
4
=

Π−1
+ (♥(t0,x0)), where Π+

4= (t+(α, β), x+(α, β)).

Lemma 5.2. Suppose that (5.3)-(5.4) and (4.1)-(4.2) hold. Then the preimage of

x = x(t) (t ∈ [t0, t0 + δ0]) under the mapping Π−
4
= (t−(α, β), x−(α, β)) can be

expressed as

α = α−(β), ∀ β ∈ [β0 − ε0, β0],(5.18)
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Figure 6. Preimages C± of x = x(t) in (α, β)-plane

Figure 7. Two slow characteristics passing through a point on shock

where ε0 > 0 is a small number, and α = α−(β) is a smooth function satisfying

α−(β0) = α0, α′−(β0) = 0, α′′−(β0) = −c0 < 0,(5.19)

in which

c0 =
(λ+(w0(α0), z0(β0))− λ−(w0(α0), z0(β0)))−1tβββ(α0, β0)

∂λ−
∂z (w0(α0), z0(β0))z′0(β0)tα(α0, β0)

> 0.(5.20)

Similarly, under the mapping Π+ it can be expressed as

α = α+(β), ∀ β ∈ [β0, β0 + ε0],(5.21)

where α = α+(β) is a smooth function satisfying

α+(β0) = α0, α′+(β0) = 0, α′′+(β0) = −c0 < 0.(5.22)

See Fig. 6, in which C± stand for the curves α = α±(β) respectively.

Proof. Notice that x = x(t) (t ∈ (t0, t0 + δ0]) is a shock growing out of the blow-up
point (t0, x0). By the Lax entropy condition, for any point (t, x(t)) on this shock we
may draw two slow characteristics, which intersect the x-axis at (0, β−) and (0, β+)
respectively (see Fig. 7). Let α− and α+ denote the corresponding α-coordinates
of these intersection points respectively.

We only prove (5.18)-(5.19). The proof of (5.21)-(5.22) is similar.
Since (t, x) = (t−(α−, β−), x−(α−, β−)) with (t0, x0) = (t− (α0, β0) , x− (α0, β0)),

on x = x(t) we have

x− (α−, β−) = x (t− (α−, β−)) ,(5.23)

where β− ≤ β0 and α− ≤ α0 (because of (5.8)). Let

F (α−, β−) = x− (α−, β−)− x (t− (α−, β−)) .(5.24)
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Differentiating (5.24) with respect to α− and using (5.11), we get

Fα− = [λ− (w0 (α−) , z0 (β−))− x′ (t− (α−, β−))]
∂t−
∂α−

.

Then, by (4.1), Remark 4.1 and the first inequality in (5.8), we obtain

Fα− (α−, β−) < 0, ∀ β− ∈ [β0 − ε0, β0),

where ε0 > 0 is a small number. Hence, solving for α− from F (α−, β−) = 0, we get
the desired (5.18).

(5.19)1 is obvious. (5.19)2 and (5.19)3 can be proved in a way similar to the
proof of (4.14). The proof is complete.

As before, we know that (w−(t, x), z−(t, x)) is not Lipschitz continuous at (t0, x0),
but (t, x) = (t+ (α+, β+) , x+ (α+, β+)) is C4 smooth on ♠(α0,β0). Denote{

w̃− (α+ (β+) , β+) = w− (t+ (α+ (β+) , β+) , x+ (α+ (β+) , β+)) ,

z̃− (α+ (β+) , β+) = z− (t+ (α+ (β+) , β+) , x+ (α+ (β+) , β+)) ,
(5.25)

where α+(β) is given by (5.21).

Lemma 5.3. Suppose that (5.3)-(5.4) and (4.1)-(4.2) hold. Then

w̃− (α+ (β+) , β+) ∈ C4 ([β0, β0 + ε0]) , z̃− (α+ (β+) , β+) ∈ C4 ([β0, β0 + ε0]) .
(5.26)

Corollary 5.2. It follows from (5.17) that

w = W+ (w̃− (α+ (β+) , β+) , z̃− (α+ (β+) , β+) , z) ,

where W+ is C4 smooth with respect to β+ ∈ [β0, β0 + ε0].

Proof of Lemma 5.3. We only prove (5.26)2. The proof of (5.26)1 is similar.
Noting that z−(t, x(t)) = z0(β−) and using Lemma 5.2, in order to prove (5.26)2

we only need to prove that β− is a C4 function of β+, where β+ ∈ [β0, β0 + ε0].
On the shock, we have

T (β−)
4
= t− (α− (β−) , β−) = t+ (α+ (β+) , β+) .(5.27)

It follows from (4.1), Remark 4.1 and (5.19) that T ′(β0) = 0. Moreover, we obtain
from (4.1)-(4.2), Remark 4.1 and (5.19) that T ′′(β0) > 0. This means that T =
T (β−) is strictly decreasing in [β0 − ε0, β0]. Therefore, solving for β− from (5.27)
and noting that t± = t±(α±, β±) are C4 functions of β±, we see that β− is a C4

function of β+. This completes the proof.

Set

♦(α0,β0) = {(α, β) | β0 ≤ β ≤ β0 + ε0, %(β) ≤ α ≤ α0 } ,(5.28)

where ε0 > 0 is a small number and %(β) is a free boundary with

%(β0) = α0, %′(β0) = 0, %′′(β0) = −c0 < 0,(5.29)

where c0 is defined by (5.20). See Fig. 8. In ♦(α0,β0), we consider the free boundary
problem for system (5.11) with the following boundary conditions: on α = %(β),

dx = H1 (w̄−(%(β), β), z̄−(%(β), β), w, z) dt,

w = W+ (w̄−(%(β), β), z̄−(%(β), β), z) ,
(5.30)
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Figure 8. Domain ♦(α0,β0) in (α, β)-plane

where w̄−, z̄− are C4 functions defined by the solution in D−; on α = α0,

t = t+(α0, β), x = x+(α0, β), w = w0(α0), z = z0(β);(5.31)

moreover, at (α0, β0)

tα = tα(α0, β0), xα = xα(α0, β0), z = z0(β0),

tβ = tβ(α0, β0), xβ = xβ(α0, β0), w = w0(α0).
(5.32)

Remark 5.4. Here we would like to emphasize that H1 (w̄−, z̄−, w, z) is a C4 func-
tion of (w̄−, z̄−, w, z), W+ (w̄−, z̄−, z) is a C4 function of (w̄−, z̄−, z), w̄−(%(β), β)
and z̄−(%(β), β) are C4 functions of β, while t+ and x+ are C4 functions of β.
Therefore, they are Lipschitz continuous with respect to all the variables.

By the above discussion, in order to solve the problem (5.14)-(5.16), it suf-
fices to prove that there exists a unique α = %(β) satisfying (5.29) such that the
problem (5.11), (5.30)-(5.32) possesses a C4 solution (t, x, w, z) = (t(α, β), x(α, β),
w(α, β), z(α, β)) with non-vanishing Jacobian

J(α, β) =
∂(t, x)
∂(α, β)

6= 0, ∀ (α, β) ∈ ♦(α0,β0)\{(α0, β0)}.(5.33)

Lemma 5.4. Under the hypotheses (5.3)-(5.4) and (4.1)-(4.2), if the problem
(5.11), (5.30)-(5.32) has a C1 solution (t, x, w, z) = (t(α, β), x(α, β), w(α, β),
z(α, β)) in ♦(α0,β0), then (5.33) always holds.

Proof. It follows from (4.17) that

tα(α0, β) < 0, tβ(α0, β) > 0, ∀ β ∈ (β0, β0 + ε0].(5.34)

Then by (2.9), in order to prove (5.33), it suffices to show that

tα(α, β) < 0, tβ(α, β) > 0, ∀ (α, β) ∈ ♦(α0,β0)\{(α0, β0)}.(5.35)

The first inequality comes directly from the first inequality in (4.1) (because of
Remark 4.1), provided that ε0 > 0 is small enough.

It remains to prove the second inequality in (5.35).
We first claim that

tβ(α, β)|α=%(β) > 0, ∀ β ∈ (β0, β0 + ε0].(5.36)

In fact, it follows from (5.30)1 that, on α = %(β),

xα%
′(β) + xβ = H1 (tα%′(β) + tβ) .(5.37)

Using (5.11), we get (
λr− −H1

)
%′(β)tα =

(
H1 − λr+

)
tβ ,(5.38)

where λr± = λ±(w(%(β), β), z(%(β), β)). Then, noting (5.8) and (5.29) and using
the first inequality in (5.35), we obtain (5.36).



3178 DE-XING KONG

Similarly to (4.20), for any (α, β) ∈ ♦(α0,β0)\{(α0, β0)} we have

tβ(α, β) = tβ(α, β)|α=%(β) +
∫ α

%(β)

G(ζ, β) expQ(ζ, α, β)dζ.

Noting (5.36), we get the second inequality in (5.35). The proof is complete.

Lemma 5.5. Under the hypotheses (5.3)-(5.4) and (4.1)-(4.2), there is a C4

smooth curve α = %(β) satisfying (5.29) such that the problem (5.11), (5.30)-(5.32)
has a unique C4 solution (t, x, w, z) = (t(α, β), x(α, β), w(α, β), z(α, β)).

Proof. In order to avoid the trouble introduced by the free boundary α = %(β), we
make the following transformation:

α̃ = −c0(α− α0)(1 + %(β)− α)
2(%(β)− α0)

(β − β0)2, β̃ = β − β0.(5.39)

Under (5.39), the free boundary α = %(β) reduces to a fixed boundary α̃ = − c02 β̃2 in
the new variables (α̃, β̃); moreover, the fixed boundary keeps the geometrical prop-
erties of α = %(β) at (α0, β0). However, in (α̃, β̃)-space the original free boundary
problem (5.11), (5.30)-(5.32) becomes a fixed boundary value problem for a quasi-
linear hyperbolic system with boundary conditions in functional form. It is easy
to see that this kind of fixed boundary value problem is equivalent to a system
of integral equations with some undetermined coefficients (see [15]). In a manner
similar to [15], we can prove that the system of integral equations has a unique C4

solution at least in a local domain
{

(α̃, β̃)| − c0
2 β̃

2 ≤ α̃ ≤ 0, 0 ≤ β̃ ≤ ε0

}
, provided

that ε0 > 0 is sufficiently small. Noting (5.39), we see that there exists a function
α = %(β) satisfying (5.29) such that the problem (5.11), (5.30)-(5.32) has a unique
C4 solution in ♦(α0,β0). Because of space limitations, we omit the details.

Proof of Theorem 5.1. The existence of a classical discontinuous solution follows
from Lemmas 5.4-5.5 easily. In particular, by the process of our construction
for the classical discontinuous solution, the Lax entropy condition on shock is
satisfied automatically, and the solution is continuous across the characteristic
x = x+(t, α0) (t ≥ t0). However, we do not know if its derivatives are con-
tinuous across this characteristic. Therefore this characteristic might be a weak
discontinuity issuing from the blow-up point (t0, x0).

The uniqueness comes from Liu [16] directly. The proof is complete.
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