## Formation and propagation of singularities for $2\times 2$ quasilinear hyperbolic systems

HTML articles powered by AMS MathViewer

- by De-xing Kong PDF
- Trans. Amer. Math. Soc.
**354**(2002), 3155-3179 Request permission

## Abstract:

Employing the method of characteristic coordinates and the singularity theory of smooth mappings, in this paper we analyze the long-term behaviour of smooth solutions of general $2\times 2$ quasilinear hyperbolic systems, provide a complete description of the solution close to blow-up points, and investigate the formation and propagation of singularities for $2\times 2$ systems of hyperbolic conservation laws.## References

- Serge Alinhac,
*Blowup for nonlinear hyperbolic equations*, Progress in Nonlinear Differential Equations and their Applications, vol. 17, Birkhäuser Boston, Inc., Boston, MA, 1995. MR**1339762**, DOI 10.1007/978-1-4612-2578-2 - Robert Bryant, Phillip Griffiths, and Lucas Hsu,
*Toward a geometry of differential equations*, Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, pp. 1–76. MR**1358612** - Peter H. Chang,
*On the breakdown phenomena of solutions of quasilinear wave equations*, Michigan Math. J.**23**(1976), no. 3, 277–287 (1977). MR**460910** - Shu-xing Chen and Li-ming Dong,
*Formation of shocks for p-system with general smooth initial data*, to appear. - John Guckenheimer,
*Solving a single conservation law*, Dynamical systems—Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his fiftieth birthday), Lecture Notes in Math., Vol. 468, Springer, Berlin, 1975, pp. 108–134. MR**0606765** - Lars Hörmander,
*Lectures on nonlinear hyperbolic differential equations*, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 26, Springer-Verlag, Berlin, 1997. MR**1466700** - Gray Jennings,
*Piecewise smooth solutions of a single conservation law exist*, Adv. in Math.**33**(1979), no. 2, 192–205. MR**544849**, DOI 10.1016/S0001-8708(79)80005-5 - Fritz John,
*Formation of singularities in one-dimensional nonlinear wave propagation*, Comm. Pure Appl. Math.**27**(1974), 377–405. MR**369934**, DOI 10.1002/cpa.3160270307 - Joseph B. Keller and Lu Ting,
*Periodic vibrations of systems governed by nonlinear partial differential equations*, Comm. Pure Appl. Math.**19**(1966), 371–420. MR**205520**, DOI 10.1002/cpa.3160190404 - De-xing Kong,
*Cauchy problem for quasilinear hyperbolic systems*, MSJ Memoirs, vol. 6, Mathematical Society of Japan, Tokyo, 2000. MR**1797837** - Dexing Kong,
*Life-span of classical solutions to quasilinear hyperbolic systems with slow decay initial data*, Chinese Ann. Math. Ser. B**21**(2000), no. 4, 413–440. MR**1801773**, DOI 10.1142/S0252959900000431 - P. D. Lax,
*Hyperbolic systems of conservation laws. II*, Comm. Pure Appl. Math.**10**(1957), 537–566. MR**93653**, DOI 10.1002/cpa.3160100406 - M.-P. Lebaud,
*Description de la formation d’un choc dans le $p$-système*, J. Math. Pures Appl. (9)**73**(1994), no. 6, 523–565 (French, with French summary). MR**1309163** - Ta Tsien Li,
*Global classical solutions for quasilinear hyperbolic systems*, RAM: Research in Applied Mathematics, vol. 32, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. MR**1291392** - Ta Tsien Li and Wen Ci Yu,
*Boundary value problems for quasilinear hyperbolic systems*, Duke University Mathematics Series, V, Duke University, Mathematics Department, Durham, NC, 1985. MR**823237** - Tai Ping Liu,
*Uniqueness of weak solutions of the Cauchy problem for general $2\times 2$ conservation laws*, J. Differential Equations**20**(1976), no. 2, 369–388. MR**393871**, DOI 10.1016/0022-0396(76)90114-5 - R. C. MacCamy and V. J. Mizel,
*Existence and nonexistence in the large of solutions of quasilinear wave equations*, Arch. Rational Mech. Anal.**25**(1967), 299–320. MR**216165**, DOI 10.1007/BF00250932 - Shizuo Nakane,
*Formation of shocks for a single conservation law*, SIAM J. Math. Anal.**19**(1988), no. 6, 1391–1408. MR**965259**, DOI 10.1137/0519102 - David G. Schaeffer,
*A regularity theorem for conservation laws*, Advances in Math.**11**(1973), 368–386. MR**326178**, DOI 10.1016/0001-8708(73)90018-2 - Saunders MacLane,
*Steinitz field towers for modular fields*, Trans. Amer. Math. Soc.**46**(1939), 23–45. MR**17**, DOI 10.1090/S0002-9947-1939-0000017-3

## Additional Information

**De-xing Kong**- Affiliation: Department of Applied Mathematics, Shanghai Jiao Tong University, Shanghai 200030, China
- Email: dkong@mail.sjtu.edu.cn
- Received by editor(s): May 24, 2000
- Received by editor(s) in revised form: May 4, 2001
- Published electronically: April 2, 2002
- Additional Notes: The author was supported in part by the National Science Foundation of China under Grant # 10001024 and the Special Funds for Major State Basic Research Projects of China.
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**354**(2002), 3155-3179 - MSC (2000): Primary 35L45, 35L67; Secondary 35L65, 76L05
- DOI: https://doi.org/10.1090/S0002-9947-02-02982-3
- MathSciNet review: 1897395