The Bergman metric on a Stein manifold with a bounded plurisubharmonic function
HTML articles powered by AMS MathViewer
- by Bo-Yong Chen and Jin-Hao Zhang
- Trans. Amer. Math. Soc. 354 (2002), 2997-3009
- DOI: https://doi.org/10.1090/S0002-9947-02-02989-6
- Published electronically: March 29, 2002
- PDF | Request permission
Abstract:
In this article, we use the pluricomplex Green function to give a sufficient condition for the existence and the completeness of the Bergman metric. As a consequence, we proved that a simply connected complete Kähler manifold possesses a complete Bergman metric provided that the Riemann sectional curvature $\le -A/\rho ^2$, which implies a conjecture of Greene and Wu. Moreover, we obtain a sharp estimate for the Bergman distance on such manifolds.References
- Zbigniew Błocki and Peter Pflug, Hyperconvexity and Bergman completeness, Nagoya Math. J. 151 (1998), 221–225. MR 1650305, DOI 10.1017/S0027763000025265
- B. Y. Chen, The Bergman metric on complete Kähler manifolds, preprint.
- B. Y. Chen and J. H. Zhang, Bergman exhaustivity, completeness and stability, Adv. Math. (Chinese) 29 (2000), 397–410.
- ———-, On Bergman completeness and Bergman stability Math. Ann. 318 (2000), 517–526.
- Klas Diederich and Takeo Ohsawa, An estimate for the Bergman distance on pseudoconvex domains, Ann. of Math. (2) 141 (1995), no. 1, 181–190. MR 1314035, DOI 10.2307/2118631
- R. E. Greene and H. Wu, Function theory on manifolds which possess a pole, Lecture Notes in Mathematics, vol. 699, Springer, Berlin, 1979. MR 521983
- Gregor Herbort, The Bergman metric on hyperconvex domains, Math. Z. 232 (1999), no. 1, 183–196. MR 1714284, DOI 10.1007/PL00004754
- Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
- Jürgen Jost and Kang Zuo, Vanishing theorems for $L^2$-cohomology on infinite coverings of compact Kähler manifolds and applications in algebraic geometry, Comm. Anal. Geom. 8 (2000), no. 1, 1–30. MR 1730897, DOI 10.4310/CAG.2000.v8.n1.a1
- M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France 113 (1985), no. 2, 231–240 (English, with French summary). MR 820321
- Shoshichi Kobayashi, Geometry of bounded domains, Trans. Amer. Math. Soc. 92 (1959), 267–290. MR 112162, DOI 10.1090/S0002-9947-1959-0112162-5
- Shoshichi Kobayashi, On complete Bergman metrics, Proc. Amer. Math. Soc. 13 (1962), 511–513. MR 141795, DOI 10.1090/S0002-9939-1962-0141795-0
- Takeo Ohsawa, Boundary behavior of the Bergman kernel function on pseudoconvex domains, Publ. Res. Inst. Math. Sci. 20 (1984), no. 5, 897–902. MR 764336, DOI 10.2977/prims/1195180870
- Rolf Richberg, Stetige streng pseudokonvexe Funktionen, Math. Ann. 175 (1968), 257–286 (German). MR 222334, DOI 10.1007/BF02063212
- Nessim Sibony, A class of hyperbolic manifolds, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 357–372. MR 627768
- J. L. Walsh, On interpolation by functions analytic and bounded in a given region, Trans. Amer. Math. Soc. 46 (1939), 46–65. MR 55, DOI 10.1090/S0002-9947-1939-0000055-0
- Jean-Luc Stehlé, Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques, Séminaire Pierre Lelong (Analyse) (année 1973–1974), Lecture Notes in Math., Vol. 474, Springer, Berlin, 1975, pp. 155–179 (French). MR 0399524
- Włodzimierz Zwonek, Completeness, Reinhardt domains and the method of complex geodesics in the theory of invariant functions, Dissertationes Math. (Rozprawy Mat.) 388 (2000), 103. MR 1785672, DOI 10.4064/dm388-0-1
Bibliographic Information
- Bo-Yong Chen
- Affiliation: Department of Applied Mathematics, Tongji University, Shanghai 200092, China
- Email: chenboy@online.sh.cn
- Jin-Hao Zhang
- Affiliation: Department of Mathematics, Fudan University, Shanghai 200433, China
- Email: zhangjhk@online.sh.cn
- Received by editor(s): August 1, 2001
- Published electronically: March 29, 2002
- Additional Notes: The first author was supported by an NSF grant TY10126005 and a grant from Tongji Univ. No. 1390104014
The second author was supported by project G1998030600 - © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 2997-3009
- MSC (2000): Primary 32H10
- DOI: https://doi.org/10.1090/S0002-9947-02-02989-6
- MathSciNet review: 1897387