On a class of jointly hyponormal Toeplitz operators
HTML articles powered by AMS MathViewer
- by Caixing Gu
- Trans. Amer. Math. Soc. 354 (2002), 3275-3298
- DOI: https://doi.org/10.1090/S0002-9947-02-03001-5
- Published electronically: April 3, 2002
- PDF | Request permission
Abstract:
We characterize when a pair of Toeplitz operators $\mathbf {T}=(T_{\phi },T_{\psi })$ is jointly hyponormal under various assumptions—for example, $\phi$ is analytic or $\phi$ is a trigonometric polynomial or $\phi -\psi$ is analytic. A typical characterization states that $\mathbf {T}=(T_{\phi },T_{\psi })$ is jointly hyponormal if and only if an algebraic relation of $\phi$ and $\psi$ holds and the single Toeplitz operator $T_{\omega }$ is hyponormal, where $\omega$ is a combination of $\phi$ and $\psi$. More general results for an $n$-tuple of Toeplitz operators are also obtained.References
- M. B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43 (1976), no. 3, 597–604. MR 428097
- Ichiro Amemiya, Takashi Ito, and Tin Kin Wong, On quasinormal Toeplitz operators, Proc. Amer. Math. Soc. 50 (1975), 254–258. MR 410451, DOI 10.1090/S0002-9939-1975-0410451-2
- Ameer Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc. 103 (1988), no. 2, 417–423. MR 943059, DOI 10.1090/S0002-9939-1988-0943059-X
- Sheldon Axler, Sun-Yung A. Chang, and Donald Sarason, Products of Toeplitz operators, Integral Equations Operator Theory 1 (1978), no. 3, 285–309. MR 511973, DOI 10.1007/BF01682841
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Arlen Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/64), 89–102. MR 160136, DOI 10.1007/978-1-4613-8208-9_{1}9
- John B. Conway and Wacław Szymański, Linear combinations of hyponormal operators, Rocky Mountain J. Math. 18 (1988), no. 3, 695–705. MR 972659, DOI 10.1216/RMJ-1988-18-3-695
- Carl C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), no. 3, 809–812. MR 947663, DOI 10.1090/S0002-9939-1988-0947663-4
- Carl C. Cowen, More subnormal Toeplitz operators, J. Reine Angew. Math. 367 (1986), 215–219. MR 839133, DOI 10.1515/crll.1986.367.215
- Carl C. Cowen and John J. Long, Some subnormal Toeplitz operators, J. Reine Angew. Math. 351 (1984), 216–220. MR 749683
- Raúl E. Curto, Quadratically hyponormal weighted shifts, Integral Equations Operator Theory 13 (1990), no. 1, 49–66. MR 1025673, DOI 10.1007/BF01195292
- Raúl E. Curto, Joint hyponormality: a bridge between hyponormality and subnormality, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 69–91. MR 1077422, DOI 10.1090/pspum/051.2/1077422
- R. E. Curto and W. Y. Lee, Joint hyponormality of Toeplitz pairs, Memoirs of Amer. Math. Soc., Vol. 150, No. 712, March 2001.
- Raúl E. Curto, Paul S. Muhly, and Jingbo Xia, Hyponormal pairs of commuting operators, Contributions to operator theory and its applications (Mesa, AZ, 1987) Oper. Theory Adv. Appl., vol. 35, Birkhäuser, Basel, 1988, pp. 1–22. MR 1017663
- Peng Fan, A note on hyponormal weighted shifts, Proc. Amer. Math. Soc. 92 (1984), no. 2, 271–272. MR 754718, DOI 10.1090/S0002-9939-1984-0754718-2
- Douglas R. Farenick and Woo Young Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996), no. 10, 4153–4174. MR 1363943, DOI 10.1090/S0002-9947-96-01683-2
- D. R. Farenick and R. McEachin, Toeplitz operators hyponormal with the unilateral shift, Integral Equations Operator Theory 22 (1995), no. 3, 273–280. MR 1337374, DOI 10.1007/BF01378776
- Ciprian Foias and Arthur E. Frazho, The commutant lifting approach to interpolation problems, Operator Theory: Advances and Applications, vol. 44, Birkhäuser Verlag, Basel, 1990. MR 1120546, DOI 10.1007/978-3-0348-7712-1
- Cai Xing Gu, A generalization of Cowen’s characterization of hyponormal Toeplitz operators, J. Funct. Anal. 124 (1994), no. 1, 135–148. MR 1284607, DOI 10.1006/jfan.1994.1102
- P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887–933. MR 270173, DOI 10.1090/S0002-9904-1970-12502-2
- Scott McCullough and Vern Paulsen, A note on joint hyponormality, Proc. Amer. Math. Soc. 107 (1989), no. 1, 187–195. MR 972236, DOI 10.1090/S0002-9939-1989-0972236-8
- Takahiko Nakazi and Katsutoshi Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338 (1993), no. 2, 753–767. MR 1162103, DOI 10.1090/S0002-9947-1993-1162103-7
- I. Schur, On power series which are bounded in the interior of the unit circle I, J. Reine Angew. Math. 147(1917), 205-232.
- Shun Hua Sun, On Toeplitz operators in the $\theta$-class, Sci. Sinica Ser. A 28 (1985), no. 3, 235–241. MR 794649
Bibliographic Information
- Caixing Gu
- Affiliation: Department of Mathematics, California Polytechnic State University, San Luis Obispo, California 93407
- MR Author ID: 236909
- ORCID: 0000-0001-6289-7755
- Email: cgu@calpoly.edu
- Received by editor(s): December 28, 1999
- Received by editor(s) in revised form: February 9, 2001, and December 3, 2001
- Published electronically: April 3, 2002
- Additional Notes: Partially supported by the National Science Foundation Grant DMS-9706838.
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 3275-3298
- MSC (2000): Primary 47B35, 47B20
- DOI: https://doi.org/10.1090/S0002-9947-02-03001-5
- MathSciNet review: 1897400