Semilinear Neumann boundary value problems on a rectangle
Author:
Junping Shi
Journal:
Trans. Amer. Math. Soc. 354 (2002), 3117-3154
MSC (2000):
Primary 35J25, 35B32; Secondary 35J60, 34C11
DOI:
https://doi.org/10.1090/S0002-9947-02-03007-6
Published electronically:
April 2, 2002
MathSciNet review:
1897394
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We consider a semilinear elliptic equation \begin{equation*} \Delta u+\lambda f(u)=0, \;\; \mathbf {x}\in \Omega ,\;\; \frac {\partial u}{\partial n }=0, \;\; \mathbf {x}\in \partial \Omega , \end{equation*} where $\Omega$ is a rectangle $(0,a)\times (0,b)$ in $\mathbf {R}^2$. For balanced and unbalanced $f$, we obtain partial descriptions of global bifurcation diagrams in $(\lambda ,u)$ space. In particular, we rigorously prove the existence of secondary bifurcation branches from the semi-trivial solutions, which is called dimension-breaking bifurcation. We also study the asymptotic behavior of the monotone solutions when $\lambda \to \infty$. The results can be applied to the Allen-Cahn equation and some equations arising from mathematical biology.
- Nicholas Alikakos, Peter W. Bates, and Giorgio Fusco, Slow motion for the Cahn-Hilliard equation in one space dimension, J. Differential Equations 90 (1991), no. 1, 81–135. MR 1094451, DOI https://doi.org/10.1016/0022-0396%2891%2990163-4
- N. D. Alikakos, L. Bronsard, and G. Fusco, Slow motion in the gradient theory of phase transitions via energy and spectrum, Calc. Var. Partial Differential Equations 6 (1998), no. 1, 39–66. MR 1488493, DOI https://doi.org/10.1007/s005260050081
- Nicholas D. Alikakos and Giorgio Fusco, Slow dynamics for the Cahn-Hilliard equation in higher space dimensions. I. Spectral estimates, Comm. Partial Differential Equations 19 (1994), no. 9-10, 1397–1447. MR 1294466, DOI https://doi.org/10.1080/03605309408821059
- Nicholas D. Alikakos and Giorgio Fusco, Slow dynamics for the Cahn-Hilliard equation in higher space dimensions: the motion of bubbles, Arch. Rational Mech. Anal. 141 (1998), no. 1, 1–61. MR 1613496, DOI https://doi.org/10.1007/s002050050072
- Nicholas D. Alikakos, Giorgio Fusco, and Michał Kowalczyk, Finite-dimensional dynamics and interfaces intersecting the boundary: equilibria and quasi-invariant manifold, Indiana Univ. Math. J. 45 (1996), no. 4, 1119–1155. MR 1444480, DOI https://doi.org/10.1512/iumj.1996.45.1123
- Nicholas D. Alikakos, Giorgio Fusco, and Vagelis Stefanopoulos, Critical spectrum and stability of interfaces for a class of reaction-diffusion equations, J. Differential Equations 126 (1996), no. 1, 106–167. MR 1382059, DOI https://doi.org/10.1006/jdeq.1996.0046
- Peter W. Bates, E. Norman Dancer, and Junping Shi, Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability, Adv. Differential Equations 4 (1999), no. 1, 1–69. MR 1667283
- Peter W. Bates and Paul C. Fife, The dynamics of nucleation for the Cahn-Hilliard equation, SIAM J. Appl. Math. 53 (1993), no. 4, 990–1008. MR 1232163, DOI https://doi.org/10.1137/0153049
- Jian Wei Hu, A strongly discrete maximum principle and a domain decomposition method for nonselfadjoint elliptic problems, Math. Numer. Sin. 21 (1999), no. 3, 283–292 (Chinese, with English summary). MR 1762986
- Bates, Peter W.; Shi, Junping, Existence and instability of spike layer solutions to singular perturbation problems. To appear in J. Funct. Anal., (2002).
- Peter W. Bates and Jian Ping Xun, Metastable patterns for the Cahn-Hilliard equation. I, J. Differential Equations 111 (1994), no. 2, 421–457. MR 1284421, DOI https://doi.org/10.1006/jdeq.1994.1089
- Peter W. Bates and Jian Ping Xun, Metastable patterns for the Cahn-Hilliard equation. II. Layer dynamics and slow invariant manifold, J. Differential Equations 117 (1995), no. 1, 165–216. MR 1320187, DOI https://doi.org/10.1006/jdeq.1995.1052
- Henri Berestycki, Luis Caffarelli, and Louis Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 69–94 (1998). Dedicated to Ennio De Giorgi. MR 1655510
- Lia Bronsard and Robert V. Kohn, On the slowness of phase boundary motion in one space dimension, Comm. Pure Appl. Math. 43 (1990), no. 8, 983–997. MR 1075075, DOI https://doi.org/10.1002/cpa.3160430804
- Pavol Brunovský and Bernold Fiedler, Numbers of zeros on invariant manifolds in reaction-diffusion equations, Nonlinear Anal. 10 (1986), no. 2, 179–193. MR 825216, DOI https://doi.org/10.1016/0362-546X%2886%2990045-3
- Jack Carr, Morton E. Gurtin, and Marshall Slemrod, Structured phase transitions on a finite interval, Arch. Rational Mech. Anal. 86 (1984), no. 4, 317–351. MR 759767, DOI https://doi.org/10.1007/BF00280031
- J. Carr and R. L. Pego, Metastable patterns in solutions of $u_t=\epsilon ^2u_{xx}-f(u)$, Comm. Pure Appl. Math. 42 (1989), no. 5, 523–576. MR 997567, DOI https://doi.org/10.1002/cpa.3160420502
- Richard G. Casten and Charles J. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. Differential Equations 27 (1978), no. 2, 266–273. MR 480282, DOI https://doi.org/10.1016/0022-0396%2878%2990033-5
- N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal. 4 (1974/75), 17–37. MR 440205, DOI https://doi.org/10.1080/00036817408839081
- Shiu Yuen Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv. 51 (1976), no. 1, 43–55. MR 397805, DOI https://doi.org/10.1007/BF02568142
- Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis 8 (1971), 321–340. MR 0288640, DOI https://doi.org/10.1016/0022-1236%2871%2990015-2
- E. N. Dancer, On the number of positive solutions of weakly nonlinear elliptic equations when a parameter is large, Proc. London Math. Soc. (3) 53 (1986), no. 3, 429–452. MR 868453, DOI https://doi.org/10.1112/plms/s3-53.3.429
- E. N. Dancer, On the uniqueness of the positive solution of a singularly perturbed problem, Rocky Mountain J. Math. 25 (1995), no. 3, 957–975. MR 1357103, DOI https://doi.org/10.1216/rmjm/1181072198
- E. N. Dancer, On positive solutions of some singularly perturbed problems where the nonlinearity changes sign, Topol. Methods Nonlinear Anal. 5 (1995), no. 1, 141–175. Contributions dedicated to Ky Fan on the occasion of his 80th birthday. MR 1350350, DOI https://doi.org/10.12775/TMNA.1995.009
- E. N. Dancer and Shusen Yan, Multipeak solutions for a singularly perturbed Neumann problem, Pacific J. Math. 189 (1999), no. 2, 241–262. MR 1696122, DOI https://doi.org/10.2140/pjm.1999.189.241
- E. N. Dancer and Shusen Yan, A singularly perturbed elliptic problem in bounded domains with nontrivial topology, Adv. Differential Equations 4 (1999), no. 3, 347–368. MR 1671254
- Ha Dang, Paul C. Fife, and L. A. Peletier, Saddle solutions of the bistable diffusion equation, Z. Angew. Math. Phys. 43 (1992), no. 6, 984–998. MR 1198672, DOI https://doi.org/10.1007/BF00916424
- Paul C. Fife, Hansjörg Kielhöfer, Stanislaus Maier-Paape, and Thomas Wanner, Perturbation of doubly periodic solution branches with applications to the Cahn-Hilliard equation, Phys. D 100 (1997), no. 3-4, 257–278. MR 1429160, DOI https://doi.org/10.1016/S0167-2789%2896%2900190-X
- G. Fusco and J. K. Hale, Stable equilibria in a scalar parabolic equation with variable diffusion, SIAM J. Math. Anal. 16 (1985), no. 6, 1152–1164. MR 807902, DOI https://doi.org/10.1137/0516085
- G. Fusco and J. K. Hale, Slow-motion manifolds, dormant instability, and singular perturbations, J. Dynam. Differential Equations 1 (1989), no. 1, 75–94. MR 1010961, DOI https://doi.org/10.1007/BF01048791
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190
- N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann. 311 (1998), no. 3, 481–491. MR 1637919, DOI https://doi.org/10.1007/s002080050196
- Changfeng Gui, Multipeak solutions for a semilinear Neumann problem, Duke Math. J. 84 (1996), no. 3, 739–769. MR 1408543, DOI https://doi.org/10.1215/S0012-7094-96-08423-9
- Changfeng Gui and Juncheng Wei, Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations 158 (1999), no. 1, 1–27. MR 1721719, DOI https://doi.org/10.1016/S0022-0396%2899%2980016-3
- Changfeng Gui and Juncheng Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math. 52 (2000), no. 3, 522–538. MR 1758231, DOI https://doi.org/10.4153/CJM-2000-024-x
- Changfeng Gui, Juncheng Wei, and Matthias Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), no. 1, 47–82 (English, with English and French summaries). MR 1743431, DOI https://doi.org/10.1016/S0294-1449%2899%2900104-3
- Timothy J. Healey and Hansjörg Kielhöfer, Symmetry and nodal properties in the global bifurcation analysis of quasi-linear elliptic equations, Arch. Rational Mech. Anal. 113 (1990), no. 4, 299–311. MR 1079191, DOI https://doi.org/10.1007/BF00374696
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
- Hansjörg Kielhöfer, Pattern formation of the stationary Cahn-Hilliard model, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), no. 6, 1219–1243. MR 1489434, DOI https://doi.org/10.1017/S0308210500027037
- Robert V. Kohn and Peter Sternberg, Local minimisers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), no. 1-2, 69–84. MR 985990, DOI https://doi.org/10.1017/S0308210500025026
- Korman, Philip, Exact multiplicity of solutions for a class of semilinear Neumann problems. Preprint, (2000).
- Michał Kowalczyk, Multiple spike layers in the shadow Gierer-Meinhardt system: existence of equilibria and the quasi-invariant manifold, Duke Math. J. 98 (1999), no. 1, 59–111. MR 1687412, DOI https://doi.org/10.1215/S0012-7094-99-09802-2
- Yan Yan Li, On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations 23 (1998), no. 3-4, 487–545. MR 1620632, DOI https://doi.org/10.1080/03605309808821354
- C.-S. Lin, W.-M. Ni, and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988), no. 1, 1–27. MR 929196, DOI https://doi.org/10.1016/0022-0396%2888%2990147-7
- Hiroshi Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci. 15 (1979), no. 2, 401–454. MR 555661, DOI https://doi.org/10.2977/prims/1195188180
- Hiroshi Matano, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), no. 2, 401–441. MR 672070
- Maier-Paape, Stanislaus; Miller, Ulrich, The set of equilibria for the Allen-Cahn equation on the square. Preprint, (2000).
- Zhen Mei, Solution branches of a semilinear elliptic problem at corank-$2$ bifurcation points with Neumann boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), no. 3, 479–495. MR 1226613, DOI https://doi.org/10.1017/S0308210500025841
- Noriko Mizoguchi and Takashi Suzuki, Equations of gas combustion: $S$-shaped bifurcation and mushrooms, J. Differential Equations 134 (1997), no. 2, 183–215. MR 1432094, DOI https://doi.org/10.1006/jdeq.1996.3221
- Wei-Ming Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc. 45 (1998), no. 1, 9–18. MR 1490535
- Wei-Ming Ni and Izumi Takagi, On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type, Trans. Amer. Math. Soc. 297 (1986), no. 1, 351–368. MR 849484, DOI https://doi.org/10.1090/S0002-9947-1986-0849484-2
- Wei-Ming Ni and Izumi Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (1991), no. 7, 819–851. MR 1115095, DOI https://doi.org/10.1002/cpa.3160440705
- Wei-Ming Ni and Izumi Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), no. 2, 247–281. MR 1219814, DOI https://doi.org/10.1215/S0012-7094-93-07004-4
- Tiancheng Ouyang and Junping Shi, Exact multiplicity of positive solutions for a class of semilinear problems, J. Differential Equations 146 (1998), no. 1, 121–156. MR 1625731, DOI https://doi.org/10.1006/jdeq.1998.3414
- Tiancheng Ouyang and Junping Shi, Exact multiplicity of positive solutions for a class of semilinear problem. II, J. Differential Equations 158 (1999), no. 1, 94–151. MR 1721723, DOI https://doi.org/10.1016/S0022-0396%2899%2980020-5
- Pablo Padilla and Yoshihiro Tonegawa, On the convergence of stable phase transitions, Comm. Pure Appl. Math. 51 (1998), no. 6, 551–579. MR 1611144, DOI https://doi.org/10.1002/%28SICI%291097-0312%28199806%2951%3A6%3C551%3A%3AAID-CPA1%3E3.0.CO%3B2-6
- Paul H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis 7 (1971), 487–513. MR 0301587, DOI https://doi.org/10.1016/0022-1236%2871%2990030-9
- Renate Schaaf, Global solution branches of two-point boundary value problems, Lecture Notes in Mathematics, vol. 1458, Springer-Verlag, Berlin, 1990. MR 1090827
- Junping Shi, Persistence and bifurcation of degenerate solutions, J. Funct. Anal. 169 (1999), no. 2, 494–531. MR 1730558, DOI https://doi.org/10.1006/jfan.1999.3483
- Shi, Junping, Exact multiplicity of solutions to superlinear and sublinear problems. To appear in Nonlinear Anal., (2001).
- Junping Shi, Blow up points of solution curves for a semilinear problem, Topol. Methods Nonlinear Anal. 15 (2000), no. 2, 251–266. MR 1784141, DOI https://doi.org/10.12775/TMNA.2000.019
- Shi, Junping, Saddle solutions of the balanced bistable diffusion equation. To appear in Comm. Pure Appl. Math., (2002).
- Shi, Junping, Entire solutions and solutions to singularly perturbed semilinear problems with unbalanced nonlinearities. In preparation.
- Shi, Junping; Shivaji, Ratnasingham, Global bifurcation for concave semipositon problems. To appear in Recent Advances in Evolution Equations, (2002).
- Junping Shi and Junping Wang, Morse indices and exact multiplicity of solutions to semilinear elliptic problems, Proc. Amer. Math. Soc. 127 (1999), no. 12, 3685–3695. MR 1694880, DOI https://doi.org/10.1090/S0002-9939-99-05542-2
- Smoller, J.; Wasserman, A., Global bifurcation of steady-state solutions. J. Differential Equations, 39, (1981), no. 2, 269–290; errata, ibid. 77, (1989), 199–202. ;
- Masaharu Taniguchi, Bifurcation from flat-layered solutions to reaction diffusion systems in two space dimensions, J. Math. Sci. Univ. Tokyo 1 (1994), no. 2, 339–367. MR 1317464
- Zheng Yuan Li and Qi Xiao Ye, On multiple positive periodic solutions for parabolic system, Gaoxiao Yingyong Shuxue Xuebao 7 (1992), no. 3, 367–380. MR 1193569
- Juncheng Wei, On the boundary spike layer solutions to a singularly perturbed Neumann problem, J. Differential Equations 134 (1997), no. 1, 104–133. MR 1429093, DOI https://doi.org/10.1006/jdeq.1996.3218
- Juncheng Wei and Matthias Winter, Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), no. 4, 459–492 (English, with English and French summaries). MR 1632937, DOI https://doi.org/10.1016/S0294-1449%2898%2980031-0
- Juncheng Wei and Matthias Winter, Multi-peak solutions for a wide class of singular perturbation problems, J. London Math. Soc. (2) 59 (1999), no. 2, 585–606. MR 1709667, DOI https://doi.org/10.1112/S002461079900719X
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35J25, 35B32, 35J60, 34C11
Retrieve articles in all journals with MSC (2000): 35J25, 35B32, 35J60, 34C11
Additional Information
Junping Shi
Affiliation:
Department of Mathematics, College of William and Mary, Williamsburg, Virginia 23187, and Department of Mathematics, Harbin Normal University, Harbin, Heilongjiang, P. R. China 150080
MR Author ID:
616436
ORCID:
0000-0003-2521-9378
Email:
shij@math.wm.edu
Keywords:
Semilinear elliptic equations,
secondary bifurcations,
global bifurcation diagrams,
asymptotic behavior of solutions
Received by editor(s):
April 17, 2001
Published electronically:
April 2, 2002
Article copyright:
© Copyright 2002
American Mathematical Society