Isomorphisms of function modules, and generalized approximation in modulus
HTML articles powered by AMS MathViewer
- by David Blecher and Krzysztof Jarosz
- Trans. Amer. Math. Soc. 354 (2002), 3663-3701
- DOI: https://doi.org/10.1090/S0002-9947-02-03016-7
- Published electronically: May 8, 2002
- PDF | Request permission
Abstract:
For a function algebra $A$ we investigate relations between the following three topics: isomorphisms of singly generated $A$-modules, Morita equivalence bimodules, and “real harmonic functions” with respect to $A$. We also consider certain groups which are naturally associated with a uniform algebra $A$. We illustrate the notions considered with several examples.References
- Josef Mall, Ein Satz über die Konvergenz von Kettenbrüchen, Math. Z. 45 (1939), 368–376 (German). MR 40, DOI 10.1007/BF01580290
- Ehrhard Behrends and Michael Cambern, An isomorphic Banach-Stone theorem, Studia Math. 90 (1988), no. 1, 15–26. MR 947918, DOI 10.4064/sm-90-1-15-26
- Lawrence M. Graves, The Weierstrass condition for multiple integral variation problems, Duke Math. J. 5 (1939), 656–660. MR 99
- David P. Blecher, A generalization of Hilbert modules, J. Funct. Anal. 136 (1996), no. 2, 365–421. MR 1380659, DOI 10.1006/jfan.1996.0034
- David P. Blecher, A new approach to Hilbert $C^*$-modules, Math. Ann. 307 (1997), no. 2, 253–290. MR 1428873, DOI 10.1007/s002080050033
- David P. Blecher, Some general theory of operator algebras and their modules, Operator algebras and applications (Samos, 1996) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 495, Kluwer Acad. Publ., Dordrecht, 1997, pp. 113–143. MR 1462678
- S. Losinsky, Sur le procédé d’interpolation de Fejér, C. R. (Doklady) Acad. Sci. URSS (N.S.) 24 (1939), 318–321 (French). MR 0002001
- D. P. Blecher, The Shilov boundary of an operator space—and the characterization theorems, J. Funct. Anal. 182 (2001), 280-343.
- David Blecher and Christian Le Merdy, On function and operator modules, Proc. Amer. Math. Soc. 129 (2001), no. 3, 833–844. MR 1802002, DOI 10.1090/S0002-9939-00-05866-4
- Andrea Cianchi, Some results in the theory of Orlicz spaces and applications to variational problems, Nonlinear analysis, function spaces and applications, Vol. 6 (Prague, 1998) Acad. Sci. Czech Repub. Inst. Math., Prague, 1999, pp. 50–92. MR 1777712
- S. Losinsky, Sur le procédé d’interpolation de Fejér, C. R. (Doklady) Acad. Sci. URSS (N.S.) 24 (1939), 318–321 (French). MR 0002001
- Lawrence G. Brown, Philip Green, and Marc A. Rieffel, Stable isomorphism and strong Morita equivalence of $C^*$-algebras, Pacific J. Math. 71 (1977), no. 2, 349–363. MR 463928
- Ronald G. Douglas and Vern I. Paulsen, Hilbert modules over function algebras, Pitman Research Notes in Mathematics Series, vol. 217, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 1028546
- Maurice J. Dupré and R. M. Gillette, Banach bundles, Banach modules and automorphisms of $C^{\ast }$-algebras, Research Notes in Mathematics, vol. 92, Pitman (Advanced Publishing Program), Boston, MA, 1983. MR 721812
- Edward G. Effros and Zhong-Jin Ruan, On nonselfadjoint operator algebras, Proc. Amer. Math. Soc. 110 (1990), no. 4, 915–922. MR 986648, DOI 10.1090/S0002-9939-1990-0986648-8
- Carl Faith, Algebra. I. Rings, modules, and categories, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 190, Springer-Verlag, Berlin-New York, 1981. Corrected reprint. MR 623254
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- T. W. Gamelin, Uniform algebras and Jensen measures, London Mathematical Society Lecture Note Series, vol. 32, Cambridge University Press, Cambridge-New York, 1978. MR 521440
- T. W. Gamelin and N. Sibony, Subharmonicity for uniform algebras, J. Functional Analysis 35 (1980), no. 1, 64–108. MR 560218, DOI 10.1016/0022-1236(80)90081-6
- A. M. Gleason, Function algebras, Seminar on Analytic Functions, vol. II, Inst. for Adv. Study, Princeton, N.J. 1957.
- P. Harmand, D. Werner, and W. Werner, $M$-ideals in Banach spaces and Banach algebras, Lecture Notes in Mathematics, vol. 1547, Springer-Verlag, Berlin, 1993. MR 1238713, DOI 10.1007/BFb0084355
- Krzysztof Jarosz, Perturbations of uniform algebras, Bull. London Math. Soc. 15 (1983), no. 2, 133–138. MR 689245, DOI 10.1112/blms/15.2.133
- Krzysztof Jarosz, Perturbations of Banach algebras, Lecture Notes in Mathematics, vol. 1120, Springer-Verlag, Berlin, 1985. MR 788884, DOI 10.1007/BFb0076885
- Krzysztof Jarosz, Small isomorphisms of $C(X,E)$ spaces, Pacific J. Math. 138 (1989), no. 2, 295–315. MR 996203
- Kenneth Hoffman, Analytic functions and logmodular Banach algebras, Acta Math. 108 (1962), 271–317. MR 149330, DOI 10.1007/BF02545769
- Kenneth Hoffman, Banach spaces of analytic functions, Dover Publications, Inc., New York, 1988. Reprint of the 1962 original. MR 1102893
- E. C. Lance, Hilbert $C^*$-modules, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1995. A toolkit for operator algebraists. MR 1325694, DOI 10.1017/CBO9780511526206
- Masao Nagasawa, Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, K\B{o}dai Math. Sem. Rep. 11 (1959), 182–188. MR 121645
- Iain Raeburn, On the Picard group of a continuous trace $C^{\ast }$-algebra, Trans. Amer. Math. Soc. 263 (1981), no. 1, 183–205. MR 590419, DOI 10.1090/S0002-9947-1981-0590419-3
- C. E. Rickart, Plurisubharmonic functions and convexity properties for general function algebras, Trans. Amer. Math. Soc. 169 (1972), 1–24. MR 317055, DOI 10.1090/S0002-9947-1972-0317055-2
- Marc A. Rieffel, Morita equivalence for operator algebras, Operator algebras and applications, Part 1 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 285–298. MR 679708
- Richard Rochberg, Deformation of uniform algebras on Riemann surfaces, Pacific J. Math. 121 (1986), no. 1, 135–181. MR 815041
- R. R. Smith, An addendum to: “$M$-ideal structure in Banach algebras” [J. Funct. Anal. 27 (1978), no. 3, 337–349; MR 57 #7175] by Smith and J. D. Ward, J. Functional Analysis 32 (1979), no. 3, 269–271. MR 538853, DOI 10.1016/0022-1236(79)90038-7
- Edgar Lee Stout, The theory of uniform algebras, Bogden & Quigley, Inc., Publishers, Tarrytown-on-Hudson, N.Y., 1971. MR 0423083
- Ion Suciu, Function algebras, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leyden, 1975. Translated from the Romanian by Mihaela Mihăilescu. MR 0370199
Bibliographic Information
- David Blecher
- Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204-3008
- Email: dblecher@math.uh.edu
- Krzysztof Jarosz
- Affiliation: Department of Mathematics and Statistics, Southern Illinois University, Edwards- ville, Illinois 62026-1653
- MR Author ID: 93850
- Email: kjarosz@siue.edu
- Received by editor(s): September 14, 1999
- Received by editor(s) in revised form: November 26, 2001
- Published electronically: May 8, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 3663-3701
- MSC (2000): Primary 46H25, 47L30, 46J10; Secondary 46L07
- DOI: https://doi.org/10.1090/S0002-9947-02-03016-7
- MathSciNet review: 1911516