Homogeneous weak solenoids
HTML articles powered by AMS MathViewer
- by Robbert Fokkink and Lex Oversteegen
- Trans. Amer. Math. Soc. 354 (2002), 3743-3755
- DOI: https://doi.org/10.1090/S0002-9947-02-03017-9
- Published electronically: April 23, 2002
- PDF | Request permission
Abstract:
A (generalized) weak solenoid is an inverse limit space over manifolds with bonding maps that are covering maps. If the covering maps are regular, then we call the inverse limit space a strong solenoid. By a theorem of M.C. McCord, strong solenoids are homogeneous. We show conversely that homogeneous weak solenoids are topologically equivalent to strong solenoids. We also give an example of a weak solenoid that has simply connected path-components, but which is not homogeneous.References
- J. M. Aarts and R. J. Fokkink, The classification of solenoids, Proc. Amer. Math. Soc. 111 (1991), no. 4, 1161–1163. MR 1042260, DOI 10.1090/S0002-9939-1991-1042260-7
- J. M. Aarts, C. L. Hagopian, and L. G. Oversteegen, The orientability of matchbox manifolds, Pacific J. Math. 150 (1991), no. 1, 1–12. MR 1120708
- J. M. Aarts and M. Martens, Flows on one-dimensional spaces, Fund. Math. 131 (1988), no. 1, 53–67. MR 970914, DOI 10.4064/fm-131-1-53-67
- Fredric D. Ancel, An alternative proof and applications of a theorem of E. G. Effros, Michigan Math. J. 34 (1987), no. 1, 39–55. MR 873018, DOI 10.1307/mmj/1029003481
- R. H. Bing, A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Canadian J. Math. 12 (1960), 209–230. MR 111001, DOI 10.4153/CJM-1960-018-x
- Clark, A., A generalization of Hagopian’s theorem and exponents, Topology Appl. 117 (2002), no. 3, 273–283.
- Clark, A., Fokkink, R.J., Bihomogeneity of solenoids, Algebraic Geom. Topol., 2 (2002), 1–8.
- Dantzig, D. van, Waerden, B.L. van der, Über metrisch homogene Räume, Abh. Math. Seminar Hamburg 6, (1928), 367–376.
- Edward G. Effros, Transformation groups and $C^{\ast }$-algebras, Ann. of Math. (2) 81 (1965), 38–55. MR 174987, DOI 10.2307/1970381
- Charles L. Hagopian, A characterization of solenoids, Pacific J. Math. 68 (1977), no. 2, 425–435. MR 458381
- James Keesling, The group of homeomorphisms of a solenoid, Trans. Amer. Math. Soc. 172 (1972), 119–131. MR 315735, DOI 10.1090/S0002-9947-1972-0315735-6
- Krystyna Kuperberg, On the bihomogeneity problem of Knaster, Trans. Amer. Math. Soc. 321 (1990), no. 1, 129–143. MR 989579, DOI 10.1090/S0002-9947-1990-0989579-7
- Ronald de Man, On composants of solenoids, Electron. Res. Announc. Amer. Math. Soc. 1 (1995), no. 2, 87–90. MR 1350684, DOI 10.1090/S1079-6762-95-02005-1
- William S. Massey, A basic course in algebraic topology, Graduate Texts in Mathematics, vol. 127, Springer-Verlag, New York, 1991. MR 1095046
- M. C. McCord, Inverse limit sequences with covering maps, Trans. Amer. Math. Soc. 114 (1965), 197–209. MR 173237, DOI 10.1090/S0002-9947-1965-0173237-0
- Piotr Minc, Solenoids and bihomogeneity, Continua (Cincinnati, OH, 1994) Lecture Notes in Pure and Appl. Math., vol. 170, Dekker, New York, 1995, pp. 297–304. MR 1326852
- J. Mioduszewski, Mappings of inverse limits, Colloq. Math. 10 (1963), 39–44. MR 166762, DOI 10.4064/cm-10-1-39-44
- John W. Green, Harmonic functions in domains with multiple boundary points, Amer. J. Math. 61 (1939), 609–632. MR 90, DOI 10.2307/2371316
- James T. Rogers Jr. and Jeffrey L. Tollefson, Involutions on solenoidal spaces, Fund. Math. 73 (1971/72), no. 1, 11–19. MR 296923, DOI 10.4064/fm-73-1-11-19
- James T. Rogers Jr. and Jeffrey L. Tollefson, Homogeneous inverse limit spaces with nonregular covering maps as bonding maps, Proc. Amer. Math. Soc. 29 (1971), 417–420. MR 273561, DOI 10.1090/S0002-9939-1971-0273561-5
- James T. Rogers Jr. and Jeffrey L. Tollefson, Homeomorphism groups of weak solenoidal spaces, Proc. Amer. Math. Soc. 28 (1971), 242–246. MR 271924, DOI 10.1090/S0002-9939-1971-0271924-5
- Richard M. Schori, Inverse limits and homogeneity, Trans. Amer. Math. Soc. 124 (1966), 533–539. MR 198416, DOI 10.1090/S0002-9947-1966-0198416-9
- Peter Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. (2) 17 (1978), no. 3, 555–565. MR 494062, DOI 10.1112/jlms/s2-17.3.555
- Segal, J., Homogeneity of inverse limit spaces, Notices Amer. Math. Soc. 5 (1958), 687.
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- Gerald S. Ungar, On all kinds of homogeneous spaces, Trans. Amer. Math. Soc. 212 (1975), 393–400. MR 385825, DOI 10.1090/S0002-9947-1975-0385825-3
- R. F. Williams, Expanding attractors, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 169–203. MR 348794
- John S. Wilson, Profinite groups, London Mathematical Society Monographs. New Series, vol. 19, The Clarendon Press, Oxford University Press, New York, 1998. MR 1691054
Bibliographic Information
- Robbert Fokkink
- Affiliation: Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294
- Lex Oversteegen
- Affiliation: Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294
- MR Author ID: 134850
- Email: overstee@vorteb.math.uab.edu
- Received by editor(s): April 4, 2001
- Received by editor(s) in revised form: January 4, 2002
- Published electronically: April 23, 2002
- Additional Notes: The second author was supported in part by NSF-DMS-0072626
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 3743-3755
- MSC (2000): Primary 54F15, 57M10; Secondary 54C10, 55R10
- DOI: https://doi.org/10.1090/S0002-9947-02-03017-9
- MathSciNet review: 1911519