Critical Heegaard surfaces
HTML articles powered by AMS MathViewer
- by David Bachman
- Trans. Amer. Math. Soc. 354 (2002), 4015-4042
- DOI: https://doi.org/10.1090/S0002-9947-02-03018-0
- Published electronically: June 6, 2002
- PDF | Request permission
Abstract:
In this paper we introduce critical surfaces, which are described via a 1-complex whose definition is reminiscent of the curve complex. Our main result is that if the minimal genus common stabilization of a pair of strongly irreducible Heegaard splittings of a 3-manifold is not critical, then the manifold contains an incompressible surface. Conversely, we also show that if a non-Haken 3-manifold admits at most one Heegaard splitting of each genus, then it does not contain a critical Heegaard surface. In the final section we discuss how this work leads to a natural metric on the space of strongly irreducible Heegaard splittings, as well as many new and interesting open questions.References
- Selman Akbulut and John D. McCarthy, Casson’s invariant for oriented homology $3$-spheres, Mathematical Notes, vol. 36, Princeton University Press, Princeton, NJ, 1990. An exposition. MR 1030042, DOI 10.1515/9781400860623
- D. Bachman, A normal form for minimal genus common stabilizations., in preparation.
- Francis Bonahon and Jean-Pierre Otal, Scindements de Heegaard des espaces lenticulaires, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 3, 451–466 (1984) (French). MR 740078, DOI 10.24033/asens.1455
- Francis Bonahon, Difféotopies des espaces lenticulaires, Topology 22 (1983), no. 3, 305–314 (French). MR 710104, DOI 10.1016/0040-9383(83)90016-2
- Jean Cerf, Sur les difféomorphismes de la sphère de dimension trois $(\Gamma _{4}=0)$, Lecture Notes in Mathematics, No. 53, Springer-Verlag, Berlin-New York, 1968 (French). MR 0229250, DOI 10.1007/BFb0060395
- A. J. Casson and C. McA. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987), no. 3, 275–283. MR 918537, DOI 10.1016/0166-8641(87)90092-7
- Michael Freedman, Joel Hass, and Peter Scott, Least area incompressible surfaces in $3$-manifolds, Invent. Math. 71 (1983), no. 3, 609–642. MR 695910, DOI 10.1007/BF02095997
- David Gabai, Foliations and the topology of $3$-manifolds. II, J. Differential Geom. 26 (1987), no. 3, 461–478. MR 910017
- J. Hempel, 3-manifolds as viewed from the curve complex, Topology, 40 (2001), 631–657.
- Jon T. Pitts and J. H. Rubinstein, Applications of minimax to minimal surfaces and the topology of $3$-manifolds, Miniconference on geometry and partial differential equations, 2 (Canberra, 1986) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 12, Austral. Nat. Univ., Canberra, 1987, pp. 137–170. MR 924434
- Hyam Rubinstein and Martin Scharlemann, Comparing Heegaard splittings of non-Haken $3$-manifolds, Topology 35 (1996), no. 4, 1005–1026. MR 1404921, DOI 10.1016/0040-9383(95)00055-0
- J. H. Rubinstein, Lecture notes from conference at UC Davis, 1996.
- Martin Scharlemann, Local detection of strongly irreducible Heegaard splittings, Topology Appl. 90 (1998), no. 1-3, 135–147. MR 1648310, DOI 10.1016/S0166-8641(97)00184-3
- Hidegorô Nakano, Über Abelsche Ringe von Projektionsoperatoren, Proc. Phys.-Math. Soc. Japan (3) 21 (1939), 357–375 (German). MR 94
- Martin Scharlemann and Abigail Thompson, Thin position for $3$-manifolds, Geometric topology (Haifa, 1992) Contemp. Math., vol. 164, Amer. Math. Soc., Providence, RI, 1994, pp. 231–238. MR 1282766, DOI 10.1090/conm/164/01596
- Friedhelm Waldhausen, Heegaard-Zerlegungen der $3$-Sphäre, Topology 7 (1968), 195–203 (German). MR 227992, DOI 10.1016/0040-9383(68)90027-X
Bibliographic Information
- David Bachman
- Affiliation: Department of Mathematics, University of Illinois at Chicago, Chicago, Illinois 60607
- Address at time of publication: Mathematics Department, Cal Poly State University, San Luis Obispo, CA 93407
- Email: bachman@math.uic.edu, dbachman@calpoly.edu
- Received by editor(s): December 22, 2000
- Received by editor(s) in revised form: January 10, 2002
- Published electronically: June 6, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 4015-4042
- MSC (2000): Primary 57M99
- DOI: https://doi.org/10.1090/S0002-9947-02-03018-0
- MathSciNet review: 1926863