On the crossing number of positive knots and braids and braid index criteria of Jones and Morton-Williams-Franks
HTML articles powered by AMS MathViewer
- by A. Stoimenow
- Trans. Amer. Math. Soc. 354 (2002), 3927-3954
- DOI: https://doi.org/10.1090/S0002-9947-02-03022-2
- Published electronically: June 10, 2002
- PDF | Request permission
Abstract:
We give examples of knots with some unusual properties of the crossing number of positive diagrams or strand number of positive braid representations. In particular, we show that positive braid knots may not have positive minimal (strand number) braid representations, giving a counterpart to results of Franks-Williams and Murasugi. Other examples answer questions of Cromwell on homogeneous and (partially) of Adams on almost alternating knots. We give a counterexample to, and a corrected version of, a theorem of Jones on the Alexander polynomial of 4-braid knots. We also give an example of a knot on which all previously applied braid index criteria fail to estimate sharply (from below) the braid index. A relation between (generalizations of) such examples and a conjecture of Jones that a minimal braid representation has unique writhe is discussed. Finally, we give a counterexample to Morton’s conjecture relating the genus and degree of the skein polynomial.References
- Colin C. Adams, The knot book, W. H. Freeman and Company, New York, 1994. An elementary introduction to the mathematical theory of knots. MR 1266837
- Colin C. Adams, Jeffrey F. Brock, John Bugbee, Timothy D. Comar, Keith A. Faigin, Amy M. Huston, Anne M. Joseph, and David Pesikoff, Almost alternating links, Topology Appl. 46 (1992), no. 2, 151–165. MR 1184114, DOI 10.1016/0166-8641(92)90130-R
- J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), 275–306.
- C. Aneziris, The mystery of knots. Computer programming for knot tabulation. Series on Knots and Everything 20, World Scientific, 1999.
- Daniel Bennequin, Entrelacements et équations de Pfaff, Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982) Astérisque, vol. 107, Soc. Math. France, Paris, 1983, pp. 87–161 (French). MR 753131
- Joan S. Birman, On the Jones polynomial of closed $3$-braids, Invent. Math. 81 (1985), no. 2, 287–294. MR 799267, DOI 10.1007/BF01389053
- Joan S. Birman and William W. Menasco, Studying links via closed braids. VI. A nonfiniteness theorem, Pacific J. Math. 156 (1992), no. 2, 265–285. MR 1186805, DOI 10.2140/pjm.1992.156.265
- Joan S. Birman and William W. Menasco, Studying links via closed braids. III. Classifying links which are closed $3$-braids, Pacific J. Math. 161 (1993), no. 1, 25–113. MR 1237139, DOI 10.2140/pjm.1993.161.25
- Joan S. Birman and R. F. Williams, Knotted periodic orbits in dynamical systems. I. Lorenz’s equations, Topology 22 (1983), no. 1, 47–82. MR 682059, DOI 10.1016/0040-9383(83)90045-9
- Robert D. Brandt, W. B. R. Lickorish, and Kenneth C. Millett, A polynomial invariant for unoriented knots and links, Invent. Math. 84 (1986), no. 3, 563–573. MR 837528, DOI 10.1007/BF01388747
- James M. Van Buskirk, Positive knots have positive Conway polynomials, Knot theory and manifolds (Vancouver, B.C., 1983) Lecture Notes in Math., vol. 1144, Springer, Berlin, 1985, pp. 146–159. MR 823288, DOI 10.1007/BFb0075018
- L. Carlitz, Richard Scoville, and Theresa Vaughan, Some arithmetic functions related to Fibonacci numbers, Fibonacci Quart. 11 (1973), no. 4, 337–386. MR 332643
- J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 329–358. MR 0258014
- P. R. Cromwell, Homogeneous links, J. London Math. Soc. (2) 39 (1989), no. 3, 535–552. MR 1002465, DOI 10.1112/jlms/s2-39.3.535
- Peter R. Cromwell, Positive braids are visually prime, Proc. London Math. Soc. (3) 67 (1993), no. 2, 384–424. MR 1226607, DOI 10.1112/plms/s3-67.2.384
- Peter R. Cromwell, A note on Morton’s conjecture concerning the lowest degree of a $2$-variable knot polynomial, Pacific J. Math. 160 (1993), no. 2, 201–205. MR 1233351, DOI 10.2140/pjm.1993.160.201
- P. R. Cromwell and H. R. Morton, Positivity of knot polynomials on positive links, J. Knot Theory Ramifications 1 (1992), no. 2, 203–206. MR 1164116, DOI 10.1142/S0218216592000112
- O. T. Dasbach and B. Mangum, On McMullen’s and other inequalities for the Thurston norm of link complements, Algebraic and Geometric Topology, 1 (2001), 321–347.
- C. H. Dowker and Morwen B. Thistlethwaite, Classification of knot projections, Topology Appl. 16 (1983), no. 1, 19–31. MR 702617, DOI 10.1016/0166-8641(83)90004-4
- Thomas Fiedler, A small state sum for knots, Topology 32 (1993), no. 2, 281–294. MR 1217069, DOI 10.1016/0040-9383(93)90020-V
- John Franks and R. F. Williams, Braids and the Jones polynomial, Trans. Amer. Math. Soc. 303 (1987), no. 1, 97–108. MR 896009, DOI 10.1090/S0002-9947-1987-0896009-2
- David Gabai, Foliations and genera of links, Topology 23 (1984), no. 4, 381–394. MR 780731, DOI 10.1016/0040-9383(84)90001-6
- Séminaire Bourbaki. Vol. 10, Société Mathématique de France, Paris, 1995 (French). Années 1966/67-1967/68. [Years 1966/67-1967/68]; Exposés 313–346; Reprint of the edition published by W. A. Benjamin, New York-Amsterdam, 1968 [ MR0224411 (37 #10)] and 1969 [ MR0255335 (41 #3)]. MR 1610884
- P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 2, 239–246. MR 776477, DOI 10.1090/S0273-0979-1985-15361-3
- C. F. Ho, A polynomial invariant for knots and links – preliminary report, Abstracts Amer. Math. Soc. 6 (1985), 300.
- J. Hoste and M. Thistlethwaite, KnotScape, a knot polynomial calculation and table access program, available at http://www.math.utk.edu/~morwen.
- Vaughan F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111. MR 766964, DOI 10.1090/S0273-0979-1985-15304-2
- V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335–388. MR 908150, DOI 10.2307/1971403
- Taizo Kanenobu, Relations between the Jones and $Q$ polynomials for $2$-bridge and $3$-braid links, Math. Ann. 285 (1989), no. 1, 115–124. MR 1010195, DOI 10.1007/BF01442676
- M. Kidwell and A. Stoimenow, Examples Relating to the Crossing Number, Writhe, and Maximal Bridge Length of Knot Diagrams, Michigan Math. J. (to appear).
- Masako Kobayashi and Tsuyoshi Kobayashi, On canonical genus and free genus of knot, J. Knot Theory Ramifications 5 (1996), no. 1, 77–85. MR 1373811, DOI 10.1142/S0218216596000060
- W. B. R. Lickorish and Kenneth C. Millett, A polynomial invariant of oriented links, Topology 26 (1987), no. 1, 107–141. MR 880512, DOI 10.1016/0040-9383(87)90025-5
- William W. Menasco and Morwen B. Thistlethwaite, The Tait flyping conjecture, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 403–412. MR 1098346, DOI 10.1090/S0273-0979-1991-16083-0
- H. R. Morton, Seifert circles and knot polynomials, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 1, 107–109. MR 809504, DOI 10.1017/S0305004100063982
- Michael Freedman, Hugh Howards, and Ying-Qing Wu, Extension of incompressible surfaces on the boundaries of 3-manifolds, Pacific J. Math. 194 (2000), no. 2, 335–348. MR 1760785, DOI 10.2140/pjm.2000.194.335
- H. R. Morton, Threading knot diagrams, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 2, 247–260. MR 817666, DOI 10.1017/S0305004100064161
- Joan S. Birman and Anatoly Libgober (eds.), Braids, Contemporary Mathematics, vol. 78, American Mathematical Society, Providence, RI, 1988. MR 975074, DOI 10.1090/conm/078
- — (ed.), Problems, in the Proceedings of the International Conference on Knot Theory “Knots in Hellas, 98”, Series on Knots and Everything 24, World Scientific, 2000, 547–559.
- Elsayed A. El-Rifai and H. R. Morton, Algorithms for positive braids, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 479–497. MR 1315459, DOI 10.1093/qmath/45.4.479
- H. R. Morton and H. B. Short, Calculating the $2$-variable polynomial for knots presented as closed braids, J. Algorithms 11 (1990), no. 1, 117–131. MR 1041170, DOI 10.1016/0196-6774(90)90033-B
- H. R. Morton and H. B. Short, The $2$-variable polynomial of cable knots, Math. Proc. Cambridge Philos. Soc. 101 (1987), no. 2, 267–278. MR 870598, DOI 10.1017/S0305004100066627
- Jun Murakami, The Kauffman polynomial of links and representation theory, Osaka J. Math. 24 (1987), no. 4, 745–758. MR 927059
- Kunio Murasugi, On the braid index of alternating links, Trans. Amer. Math. Soc. 326 (1991), no. 1, 237–260. MR 1000333, DOI 10.1090/S0002-9947-1991-1000333-3
- Kunio Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), no. 2, 187–194. MR 895570, DOI 10.1016/0040-9383(87)90058-9
- Kunio Murasugi, On closed $3$-braids, Memoirs of the American Mathematical Society, No. 151, American Mathematical Society, Providence, R.I., 1974. MR 0356023
- Kunio Murasugi and Józef H. Przytycki, The skein polynomial of a planar star product of two links, Math. Proc. Cambridge Philos. Soc. 106 (1989), no. 2, 273–276. MR 1002540, DOI 10.1017/S0305004100078099
- Takuji Nakamura, Positive alternating links are positively alternating, J. Knot Theory Ramifications 9 (2000), no. 1, 107–112. MR 1749503, DOI 10.1142/S0218216500000050
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- Jonathan A. Hillman, Finite knot modules and the factorization of certain simple knots, Math. Ann. 257 (1981), no. 2, 261–274. MR 634467, DOI 10.1007/BF01458289
- Lee Rudolph, Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv. 58 (1983), no. 1, 1–37. MR 699004, DOI 10.1007/BF02564622
- N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, accessible on the Internet address http://www.research.att.com/~njas/sequences.
- John R. Stallings, Constructions of fibred knots and links, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 55–60. MR 520522
- A. Stoimenow, Positive knots, closed braids and the Jones polynomial, preprint arXiv:math/9805078.
- —, Knots of genus two, preprint.
- —, Generating functions, Fibonacci numbers, and rational knots, preprint.
- A. Stoimenow, Knots of genus one or on the number of alternating knots of given genus, Proc. Amer. Math. Soc. 129 (2001), no. 7, 2141–2156. MR 1825928, DOI 10.1090/S0002-9939-01-05823-3
- —, Some inequalities between knot invariants, accepted by Internat. J. Math.
- Pierre Vogel, Representation of links by braids: a new algorithm, Comment. Math. Helv. 65 (1990), no. 1, 104–113. MR 1036132, DOI 10.1007/BF02566597
Bibliographic Information
- A. Stoimenow
- Affiliation: Max-Planck-Institut für Mathematik, Vivatsgasse 7, D-53111 Bonn, Germany
- Address at time of publication: Department of Mathematics, University of Toronto, Toronto, Canada M5S 3G3
- Email: alex@mpim-bonn.mpg.de, stoimeno@math.toronto.edu
- Received by editor(s): November 10, 2001
- Received by editor(s) in revised form: February 12, 2002
- Published electronically: June 10, 2002
- Additional Notes: Supported by a DFG postdoc grant.
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 3927-3954
- MSC (2000): Primary 57M25; Secondary 20F10, 20F36
- DOI: https://doi.org/10.1090/S0002-9947-02-03022-2
- MathSciNet review: 1926860