Spectral asymptotics for Sturm-Liouville equations with indefinite weight
HTML articles powered by AMS MathViewer
- by Paul A. Binding, Patrick J. Browne and Bruce A. Watson
- Trans. Amer. Math. Soc. 354 (2002), 4043-4065
- DOI: https://doi.org/10.1090/S0002-9947-02-03023-4
- Published electronically: May 22, 2002
- PDF | Request permission
Abstract:
The Sturm-Liouville equation \begin{equation*} -(py’)’ + qy =\lambda ry \;\; \text {on}\;\; [0,l] \end{equation*} is considered subject to the boundary conditions \begin{align*} y(0)\cos \alpha &= (py’)(0)\sin \alpha ,\\ y(l)\cos \beta &= (py’)(l)\sin \beta . \end{align*} We assume that $p$ is positive and that $pr$ is piecewise continuous and changes sign at its discontinuities. We give asymptotic approximations up to $O(1/\sqrt {n})$ for $\sqrt {\lambda _n}$, or equivalently up to $O(\sqrt {n})$ for $\lambda _n$, the eigenvalues of the above boundary value problem.References
- F. V. Atkinson and A. B. Mingarelli, Asymptotics of the number of zeros and of the eigenvalues of general weighted Sturm-Liouville problems, J. Reine Angew. Math. 375/376 (1987), 380–393. MR 882305
- P. A. Binding, P. J. Browne, and K. Seddighi, Sturm-Liouville problems with eigenparameter dependent boundary conditions, Proc. Edinburgh Math. Soc. (2) 37 (1994), no. 1, 57–72. MR 1258031, DOI 10.1017/S0013091500018691
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- A. A. Dorodnicyn, Asymptotic laws of distribution of the characteristic values for certain special forms of differential equations of the second order, Amer. Math. Soc. Transl. (2) 16 (1960), 1–101. MR 0117381, DOI 10.1090/trans2/016/01
- W. Eberhard and G. Freiling, The distribution of the eigenvalues for second order eigenvalue problems in the presence of an arbitrary number of turning points, Results Math. 21 (1992), no. 1-2, 24–41. MR 1146634, DOI 10.1007/BF03323070
- G. M. Gubreev and V. N. Pivovarchik, Spectral analysis of the Regge problem with parameters, Funktsional. Anal. i Prilozhen. 31 (1997), no. 1, 70–74 (Russian); English transl., Funct. Anal. Appl. 31 (1997), no. 1, 54–57. MR 1459834, DOI 10.1007/BF02466004
- Harry Hochstadt, On inverse problems associated with Sturm-Liouville operators, J. Differential Equations 17 (1975), 220–235. MR 367359, DOI 10.1016/0022-0396(75)90042-X
- Albert Eagle, Series for all the roots of the equation $(z-a)^m=k(z-b)^n$, Amer. Math. Monthly 46 (1939), 425–428. MR 6, DOI 10.2307/2303037
- R. E. Langer, On the asymptotic solutions of ordinary differential equations, with an application to the Bessel functions of large order, Trans. Amer. Math. Soc. (1931) 33, 23-64.
- B. M. Levitan and M. G. Gasymov, Determination of a differential equation by two spectra, Uspehi Mat. Nauk 19 (1964), no. 2 (116), 3–63 (Russian). MR 0162996
- S. Strelitz, Asymptotics for solutions of linear differential equations having turning points with applications, Mem. Amer. Math. Soc. 142 (1999), no. 676, viii+89. MR 1625068, DOI 10.1090/memo/0676
Bibliographic Information
- Paul A. Binding
- Affiliation: Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Email: binding@ucalgary.ca
- Patrick J. Browne
- Affiliation: Mathematical Sciences Group, Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E6
- Email: browne@snoopy.usask.ca
- Bruce A. Watson
- Affiliation: Department of Mathematics, University of the Witwatersrand, Private Bag 3, P O WITS 2050, South Africa
- MR Author ID: 649582
- ORCID: 0000-0003-2403-1752
- Email: watson-ba@e-math.ams.org
- Received by editor(s): January 12, 2002
- Published electronically: May 22, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 4043-4065
- MSC (2000): Primary 34L20, 34B09, 34B24; Secondary 47E05
- DOI: https://doi.org/10.1090/S0002-9947-02-03023-4
- MathSciNet review: 1926864