Weak amenability of module extensions of Banach algebras
HTML articles powered by AMS MathViewer
- by Yong Zhang
- Trans. Amer. Math. Soc. 354 (2002), 4131-4151
- DOI: https://doi.org/10.1090/S0002-9947-02-03039-8
- Published electronically: June 4, 2002
- PDF | Request permission
Abstract:
We start by discussing general necessary and sufficient conditions for a module extension Banach algebra to be $n$-weakly amenable, for $n = 0,1,2,\cdots$. Then we investigate various special cases. All these case studies finally provide us with a way to construct an example of a weakly amenable Banach algebra which is not $3$-weakly amenable. This answers an open question raised by H. G. Dales, F. Ghahramani and N. Grønbæk.References
- W. G. Bade, P. C. Curtis Jr., and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. (3) 55 (1987), no. 2, 359–377. MR 896225, DOI 10.1093/plms/s3-55_{2}.359
- W. G. Bade, H. G. Dales, and Z. A. Lykova, Algebraic and strong splittings of extensions of Banach algebras, Mem. Amer. Math. Soc. 137 (1999), no. 656, viii+113. MR 1491607, DOI 10.1090/memo/0656
- Frank F. Bonsall and John Duncan, Complete normed algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, New York-Heidelberg, 1973. MR 0423029, DOI 10.1007/978-3-642-65669-9
- Arlen Brown, P. R. Halmos, and Carl Pearcy, Commutators of operators on Hilbert space, Canadian J. Math. 17 (1965), 695–708. MR 203460, DOI 10.4153/CJM-1965-070-7
- Arlen Brown and Carl Pearcy, Commutators in factors of type III, Canadian J. Math. 18 (1966), 1152–1160. MR 201987, DOI 10.4153/CJM-1966-115-2
- John B. Conway, A course in functional analysis, Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1985. MR 768926, DOI 10.1007/978-1-4757-3828-5
- P. C. Curtis Jr., Amenability, weak amenability, and the close homomorphism property for commutative Banach algebras, Function spaces (Edwardsville, IL, 1994) Lecture Notes in Pure and Appl. Math., vol. 172, Dekker, New York, 1995, pp. 59–69. MR 1352221
- P. C. Curtis Jr. and R. J. Loy, The structure of amenable Banach algebras, J. London Math. Soc. (2) 40 (1989), no. 1, 89–104. MR 1028916, DOI 10.1112/jlms/s2-40.1.89
- H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs. New Series, vol. 24, The Clarendon Press, Oxford University Press, New York, 2000. Oxford Science Publications. MR 1816726
- H. G. Dales, F. Ghahramani, and N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), no. 1, 19–54. MR 1489459
- M. Despić and F. Ghahramani, Weak amenability of group algebras of locally compact groups, Canad. Math. Bull. 37 (1994), no. 2, 165–167. MR 1275699, DOI 10.4153/CMB-1994-024-4
- B. E. Forrest and L. W. Marcoux, Weak amenability of triangular Banach algebras, Trans. Amer. Math. Soc. 354 (2002), 1435–1452.
- F. Ghahramani, R. J. Loy, and G. A. Willis, Amenability and weak amenability of second conjugate Banach algebras, Proc. Amer. Math. Soc. 124 (1996), no. 5, 1489–1497. MR 1307520, DOI 10.1090/S0002-9939-96-03177-2
- Niels Grønbæk, Weak and cyclic amenability for noncommutative Banach algebras, Proc. Edinburgh Math. Soc. (2) 35 (1992), no. 2, 315–328. MR 1169250, DOI 10.1017/S0013091500005587
- Niels Grønbæk, Amenability and weak amenability of tensor algebras and algebras of nuclear operators, J. Austral. Math. Soc. Ser. A 51 (1991), no. 3, 483–488. MR 1125449, DOI 10.1017/S1446788700034649
- Niels Groenbaek, A characterization of weakly amenable Banach algebras, Studia Math. 94 (1989), no. 2, 149–162. MR 1025743, DOI 10.4064/sm-94-2-149-162
- U. Haagerup, All nuclear $C^{\ast }$-algebras are amenable, Invent. Math. 74 (1983), no. 2, 305–319. MR 723220, DOI 10.1007/BF01394319
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- A. Ya. Helemskii, Banach and locally convex algebras, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993. Translated from the Russian by A. West. MR 1231796
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- B. E. Johnson, Weak amenability of group algebras, Bull. London Math. Soc. 23 (1991), no. 3, 281–284. MR 1123339, DOI 10.1112/blms/23.3.281
- B. E. Johnson, Derivations from $L^1(G)$ into $L^1(G)$ and $L^\infty (G)$, Harmonic analysis (Luxembourg, 1987) Lecture Notes in Math., vol. 1359, Springer, Berlin, 1988, pp. 191–198. MR 974315, DOI 10.1007/BFb0086599
- Barry Edward Johnson, Cohomology in Banach algebras, Memoirs of the American Mathematical Society, No. 127, American Mathematical Society, Providence, R.I., 1972. MR 0374934
- Florin Rădulescu, An invariant for subfactors in the von Neumann algebra of a free group, Free probability theory (Waterloo, ON, 1995) Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 213–239. MR 1426841
- V. Losert, A characterization of SIN-groups, Math. Ann. 273 (1985), no. 1, 81–88. MR 814196, DOI 10.1007/BF01455915
- Paul Milnes, Uniformity and uniformly continuous functions for locally compact groups, Proc. Amer. Math. Soc. 109 (1990), no. 2, 567–570. MR 1023345, DOI 10.1090/S0002-9939-1990-1023345-7
- Theodore W. Palmer, Banach algebras and the general theory of $^*$-algebras. Vol. I, Encyclopedia of Mathematics and its Applications, vol. 49, Cambridge University Press, Cambridge, 1994. Algebras and Banach algebras. MR 1270014, DOI 10.1017/CBO9781107325777
- T. W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky Mountain J. Math. 8 (1978), no. 4, 683–741. MR 513952, DOI 10.1216/RMJ-1978-8-4-683
- Carl Pearcy and David Topping, On commutators in ideals of compact operators, Michigan Math. J. 18 (1971), 247–252. MR 284853
- Yong Zhang, Nilpotent ideals in a class of Banach algebras, Proc. Amer. Math. Soc. 127 (1999), no. 11, 3237–3242. MR 1605957, DOI 10.1090/S0002-9939-99-04896-0
- Yong Zhang, Weak amenability of a class of Banach algebras, Canad. Math. Bull. 44 (2001), 504-508.
Bibliographic Information
- Yong Zhang
- Affiliation: Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
- ORCID: 0000-0002-0440-6396
- Email: zhangy@cc.umanitoba.ca
- Received by editor(s): August 23, 1999
- Received by editor(s) in revised form: January 25, 2002
- Published electronically: June 4, 2002
- Additional Notes: Research supported by NSERC
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 4131-4151
- MSC (2000): Primary 46H20; Secondary 47B47, 46H10, 46H25, 46H35
- DOI: https://doi.org/10.1090/S0002-9947-02-03039-8
- MathSciNet review: 1926868