Emergence of the Witt group in the cellular lattice of rational spaces
HTML articles powered by AMS MathViewer
- by Kathryn Hess and Paul-Eugène Parent
- Trans. Amer. Math. Soc. 354 (2002), 4571-4583
- DOI: https://doi.org/10.1090/S0002-9947-02-03049-0
- Published electronically: July 2, 2002
- PDF | Request permission
Abstract:
We give an embedding of a quotient of the Witt semigroup into the lattice of rational cellular classes represented by formal $2$-cones between $S^{2n}$ and the two-cell complex $X_n=S^{2n}\cup _{[\iota ,\iota ]}e^{4n}$ ($n\geq 1$).References
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- David J. Anick, Hopf algebras up to homotopy, J. Amer. Math. Soc. 2 (1989), no. 3, 417–453. MR 991015, DOI 10.1090/S0894-0347-1989-0991015-7
- A. K. Bousfield, Localization and periodicity in unstable homotopy theory, J. Amer. Math. Soc. 7 (1994), no. 4, 831–873. MR 1257059, DOI 10.1090/S0894-0347-1994-1257059-7
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573, DOI 10.1007/978-3-540-38117-4
- Wojciech Chachólski, Closed classes, Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guíxols, 1994) Progr. Math., vol. 136, Birkhäuser, Basel, 1996, pp. 95–118. MR 1397724, DOI 10.1007/978-3-0348-9018-2_{7}
- W. Chachólski, P.-E. Parent, and D. Stanley, $A$-acyclic spaces versus $A$-cellular spaces, preprint.
- W. Chachólski, P.-E. Parent, and D. Stanley, Cellular generators, Proc. Amer. Math. Soc., To appear.
- Emmanuel Dror Farjoun, Cellular spaces, null spaces and homotopy localization, Lecture Notes in Mathematics, vol. 1622, Springer-Verlag, Berlin, 1996. MR 1392221, DOI 10.1007/BFb0094429
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847, DOI 10.1007/978-1-4613-0105-9
- S. Halperin and J.-M. Lemaire, Suites inertes dans les algèbres de Lie graduées (“Autopsie d’un meurtre. II”), Math. Scand. 61 (1987), no. 1, 39–67 (French). MR 929396, DOI 10.7146/math.scand.a-12190
- K. Hess, The rational homotopy algebra and cellular type, preprint.
- Michael J. Hopkins and Jeffrey H. Smith, Nilpotence and stable homotopy theory. II, Ann. of Math. (2) 148 (1998), no. 1, 1–49. MR 1652975, DOI 10.2307/120991
- D. W. Lewis and J.-P. Tignol, Classification theorems for central simple algebras with involution, Manuscripta Math. 100 (1999), no. 3, 259–276. With an appendix by R. Parimala. MR 1725355, DOI 10.1007/s002290050199
- Albrecht Pfister, Quadratic forms with applications to algebraic geometry and topology, London Mathematical Society Lecture Note Series, vol. 217, Cambridge University Press, Cambridge, 1995. MR 1366652, DOI 10.1017/CBO9780511526077
- Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295. MR 258031, DOI 10.2307/1970725
- R. H. J. Germay, Généralisation de l’équation de Hesse, Ann. Soc. Sci. Bruxelles Sér. I 59 (1939), 139–144 (French). MR 86
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078, DOI 10.1007/BF02684341
- Daniel Tanré, Homotopie rationnelle: modèles de Chen, Quillen, Sullivan, Lecture Notes in Mathematics, vol. 1025, Springer-Verlag, Berlin, 1983 (French). MR 764769, DOI 10.1007/BFb0071482
Bibliographic Information
- Kathryn Hess
- Affiliation: Chaire d’Algèbre, Département de Mathématiques, Ecole Polytechnique Fédérale, 1015 Lausanne, Suisse
- MR Author ID: 307936
- Email: kathryn.hess@epfl.ch
- Paul-Eugène Parent
- Affiliation: Chaire d’Algèbre, Département de Mathématiques, Ecole Polytechnique Fédérale, 1015 Lausanne, Suisse
- Email: paul-eugene.parent@epfl.ch
- Received by editor(s): November 6, 2001
- Received by editor(s) in revised form: March 19, 2002
- Published electronically: July 2, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 4571-4583
- MSC (2000): Primary 11E04, 55P60, 55P62
- DOI: https://doi.org/10.1090/S0002-9947-02-03049-0
- MathSciNet review: 1926889