A Berger-Green type inequality for compact Lorentzian manifolds
HTML articles powered by AMS MathViewer
- by Manuel Gutiérrez, Francisco J. Palomo and Alfonso Romero
- Trans. Amer. Math. Soc. 354 (2002), 4505-4523
- DOI: https://doi.org/10.1090/S0002-9947-02-03060-X
- Published electronically: July 2, 2002
- PDF | Request permission
Erratum: Trans. Amer. Math. Soc. 355 (2003), 5119-5120.
Abstract:
We give a Lorentzian metric on the null congruence associated with a timelike conformal vector field. A Liouville type theorem is proved and a boundedness for the volume of the null congruence, analogous to a well-known Berger-Green theorem in the Riemannian case, will be derived by studying conjugate points along null geodesics. As a consequence, several classification results on certain compact Lorentzian manifolds without conjugate points on its null geodesics are obtained. Finally, several properties of null geodesics of a natural Lorentzian metric on each odd-dimensional sphere have been found.References
- R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, tensor analysis, and applications, 2nd ed., Applied Mathematical Sciences, vol. 75, Springer-Verlag, New York, 1988. MR 960687, DOI 10.1007/978-1-4612-1029-0
- Luis J. Alías, Alfonso Romero, and Miguel Sánchez, Spacelike hypersurfaces of constant mean curvature in certain spacetimes, Proceedings of the Second World Congress of Nonlinear Analysts, Part 1 (Athens, 1996), 1997, pp. 655–661. MR 1489832, DOI 10.1016/S0362-546X(97)00246-0
- Lars Andersson, Mattias Dahl, and Ralph Howard, Boundary and lens rigidity of Lorentzian surfaces, Trans. Amer. Math. Soc. 348 (1996), no. 6, 2307–2329. MR 1363008, DOI 10.1090/S0002-9947-96-01688-1
- John K. Beem, Paul E. Ehrlich, and Kevin L. Easley, Global Lorentzian geometry, 2nd ed., Monographs and Textbooks in Pure and Applied Mathematics, vol. 202, Marcel Dekker, Inc., New York, 1996. MR 1384756
- Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). MR 0282313, DOI 10.1007/BFb0064643
- Arthur L. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 93, Springer-Verlag, Berlin-New York, 1978. With appendices by D. B. A. Epstein, J.-P. Bourguignon, L. Bérard-Bergery, M. Berger and J. L. Kazdan. MR 496885, DOI 10.1007/978-3-642-61876-5
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- Isaac Chavel, Riemannian geometry—a modern introduction, Cambridge Tracts in Mathematics, vol. 108, Cambridge University Press, Cambridge, 1993. MR 1271141
- Marcos Dajczer and Katsumi Nomizu, On the boundedness of Ricci curvature of an indefinite metric, Bol. Soc. Brasil. Mat. 11 (1980), no. 1, 25–30. MR 607014, DOI 10.1007/BF02584877
- Paul E. Ehrlich and Seon-Bu Kim, From the Riccati inequality to the Raychaudhuri equation, Differential geometry and mathematical physics (Vancouver, BC, 1993) Contemp. Math., vol. 170, Amer. Math. Soc., Providence, RI, 1994, pp. 65–78. MR 1290565, DOI 10.1090/conm/170/01745
- Eduardo García-Río and Demir N. Kupeli, Singularity versus splitting theorems for stably causal spacetimes, Ann. Global Anal. Geom. 14 (1996), no. 3, 301–312. MR 1400291, DOI 10.1007/BF00054475
- Alfred Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967), 715–737. MR 0205184
- L. W. Green, Auf Wiedersehensflächen, Ann. of Math. (2) 78 (1963), 289–299 (German). MR 155271, DOI 10.2307/1970344
- Steven G. Harris, A triangle comparison theorem for Lorentz manifolds, Indiana Univ. Math. J. 31 (1982), no. 3, 289–308. MR 652817, DOI 10.1512/iumj.1982.31.31026
- Steven G. Harris, A characterization of Robertson-Walker spaces by null sectional curvature, Gen. Relativity Gravitation 17 (1985), no. 5, 493–498. MR 789529, DOI 10.1007/BF00761906
- Dale Husemoller, Fibre bundles, 3rd ed., Graduate Texts in Mathematics, vol. 20, Springer-Verlag, New York, 1994. MR 1249482, DOI 10.1007/978-1-4757-2261-1
- Yoshinobu Kamishima, Completeness of Lorentz manifolds of constant curvature admitting Killing vector fields, J. Differential Geom. 37 (1993), no. 3, 569–601. MR 1217161
- Olga Taussky, An algebraic property of Laplace’s differential equation, Quart. J. Math. Oxford Ser. 10 (1939), 99–103. MR 83, DOI 10.1093/qmath/os-10.1.99
- Jerry L. Kazdan, An isoperimetric inequality and Wiedersehen manifolds, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 143–157. MR 645734
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238225
- Lisa Koch-Sen, Infinitesimal null isotropy and Robertson-Walker metrics, J. Math. Phys. 26 (1985), no. 3, 407–410. MR 786395, DOI 10.1063/1.526623
- Ravi S. Kulkarni and Frank Raymond, $3$-dimensional Lorentz space-forms and Seifert fiber spaces, J. Differential Geom. 21 (1985), no. 2, 231–268. MR 816671
- Barrett O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity. MR 719023
- Alfonso Romero and Miguel Sánchez, On completeness of certain families of semi-Riemannian manifolds, Geom. Dedicata 53 (1994), no. 1, 103–117. MR 1299888, DOI 10.1007/BF01264047
- Alfonso Romero and Miguel Sánchez, Completeness of compact Lorentz manifolds admitting a timelike conformal Killing vector field, Proc. Amer. Math. Soc. 123 (1995), no. 9, 2831–2833. MR 1257122, DOI 10.1090/S0002-9939-1995-1257122-3
- A. Romero and M. Sánchez, An integral inequality on compact Lorentz manifolds, and its applications, Bull. London Math. Soc. 28 (1996), no. 5, 509–513. MR 1396153, DOI 10.1112/blms/28.5.509
- Alfonso Romero and Miguel Sánchez, Bochner’s technique on Lorentzian manifolds and infinitesimal conformal symmetries, Pacific J. Math. 186 (1998), no. 1, 141–148. MR 1665060, DOI 10.2140/pjm.1998.186.141
- Rainer Kurt Sachs and Hung Hsi Wu, General relativity for mathematicians, Graduate Texts in Mathematics, Vol. 48, Springer-Verlag, New York-Heidelberg, 1977. MR 0503498, DOI 10.1007/978-1-4612-9903-5
- Miguel Sánchez, Structure of Lorentzian tori with a Killing vector field, Trans. Amer. Math. Soc. 349 (1997), no. 3, 1063–1080. MR 1376554, DOI 10.1090/S0002-9947-97-01745-5
- Joseph A. Wolf, Spaces of constant curvature, 3rd ed., Publish or Perish, Inc., Boston, Mass., 1974. MR 0343214
- H. Wu, On the de Rham decomposition theorem, Illinois J. Math. 8 (1964), 291–311. MR 161280
- Kentaro Yano and Shigeru Ishihara, Tangent and cotangent bundles: differential geometry, Pure and Applied Mathematics, No. 16, Marcel Dekker, Inc., New York, 1973. MR 0350650
- Ulvi Yurtsever, Test fields on compact space-times, J. Math. Phys. 31 (1990), no. 12, 3064–3078. MR 1079255, DOI 10.1063/1.528960
Bibliographic Information
- Manuel Gutiérrez
- Affiliation: Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
- Email: mgl@agt.cie.uma.es
- Francisco J. Palomo
- Affiliation: Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
- Email: fpalo1@clientes.unicaja.es
- Alfonso Romero
- Affiliation: Departamento de Geometría y Topología, Universidad de Granada, 18071 Granada, Spain.
- MR Author ID: 196140
- Email: aromero@ugr.es
- Received by editor(s): April 6, 2001
- Received by editor(s) in revised form: April 11, 2002
- Published electronically: July 2, 2002
- Additional Notes: The first author was partially supported by MCYT-FEDER Grant BFM2001-1825, and the third author by MCYT-FEDER Grant BFM2001-2871-C04-01.
The second author would like to dedicate this paper to the memory of his grandmother Pepa. - © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 4505-4523
- MSC (2000): Primary 53C50, 53C22; Secondary 53C20
- DOI: https://doi.org/10.1090/S0002-9947-02-03060-X
- MathSciNet review: 1926886