Detection of renewal system factors via the Conley index
HTML articles powered by AMS MathViewer
- by Jim Wiseman
- Trans. Amer. Math. Soc. 354 (2002), 4953-4968
- DOI: https://doi.org/10.1090/S0002-9947-02-03063-5
- Published electronically: August 1, 2002
- PDF | Request permission
Abstract:
Let $N$ be an isolating neighborhood for a map $f$. If we can decompose $N$ into the disjoint union of compact sets $N_1$ and $N_2$, then we can relate the dynamics on the maximal invariant set $\operatorname {Inv} N$ to the shift on two symbols by noting which component of $N$ each iterate of a point $x\in \operatorname {Inv} N$ lies in. We examine a method, based on work by Mischaikow, Szymczak, et al., for using the discrete Conley index to detect explicit subshifts of the shift associated to $N$. In essence, we measure the difference between the Conley index of $\operatorname {Inv}N$ and the sum of the indices of $\operatorname {Inv} N_1$ and $\operatorname {Inv} N_2$.References
- Lluís Alsedà, Jaume Llibre, and MichałMisiurewicz, Combinatorial dynamics and entropy in dimension one, 2nd ed., Advanced Series in Nonlinear Dynamics, vol. 5, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. MR 1807264, DOI 10.1142/4205
- S. A. Amitsur, On the characteristic polynomial of a sum of matrices, Linear and Multilinear Algebra 8 (1979/80), no. 3, 177–182. MR 560557, DOI 10.1080/03081088008817315
- Maria C. Carbinatto, Jaroslaw Kwapisz, and Konstantin Mischaikow, Horseshoes and the Conley index spectrum, Ergodic Theory Dynam. Systems 20 (2000), no. 2, 365–377. MR 1756975, DOI 10.1017/S0143385700000171
- M. C. Carbinatto and K. Mischaikow, Horseshoes and the Conley index spectrum. II. The theorem is sharp, Discrete Contin. Dynam. Systems 5 (1999), no. 3, 599–616. MR 1696332, DOI 10.3934/dcds.1999.5.599
- Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- John Franks and David Richeson, Shift equivalence and the Conley index, Trans. Amer. Math. Soc. 352 (2000), no. 7, 3305–3322. MR 1665329, DOI 10.1090/S0002-9947-00-02488-0
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Jaroslaw Kwapisz, Cocyclic subshifts, Math. Z. 234 (2000), no. 2, 255–290. MR 1765882, DOI 10.1007/s002099900107
- Douglas Lind and Brian Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995. MR 1369092, DOI 10.1017/CBO9780511626302
- Konstantin Mischaikow, The Conley index theory: a brief introduction, Conley index theory (Warsaw, 1997) Banach Center Publ., vol. 47, Polish Acad. Sci. Inst. Math., Warsaw, 1999, pp. 9–19. MR 1675403
- Konstantin Mischaikow and Marian Mrozek, Chaos in the Lorenz equations: a computer-assisted proof, Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 1, 66–72. MR 1276767, DOI 10.1090/S0273-0979-1995-00558-6
- Konstantin Mischaikow and Marian Mrozek, Isolating neighborhoods and chaos, Japan J. Indust. Appl. Math. 12 (1995), no. 2, 205–236. MR 1337206, DOI 10.1007/BF03167289
- Konstantin Mischaikow and Marian Mrozek, Chaos in the Lorenz equations: a computer assisted proof. II. Details, Math. Comp. 67 (1998), no. 223, 1023–1046. MR 1459392, DOI 10.1090/S0025-5718-98-00945-4
- Konstantin Mischaikow, Marian Mrozek, and Andrzej Szymczak, Chaos in the Lorenz equations: a computer assisted proof. III. Classical parameter values, J. Differential Equations 169 (2001), no. 1, 17–56, Special issue in celebration of Jack K. Hale’s 70th birthday, Part 3 (Atlanta, GA/Lisbon, 1998).
- Marian Mrozek, Leray functor and cohomological Conley index for discrete dynamical systems, Trans. Amer. Math. Soc. 318 (1990), no. 1, 149–178. MR 968888, DOI 10.1090/S0002-9947-1990-0968888-1
- —, The Conley index and rigorous numerics, Non-linear analysis and boundary value problems for ordinary differential equations (Udine), Springer, Vienna, 1996, pp. 175–195.
- David Richeson, private communication, 1998.
- Joel W. Robbin and Dietmar Salamon, Dynamical systems, shape theory and the Conley index, Ergodic Theory Dynam. Systems 8$^*$ (1988), no. Charles Conley Memorial Issue, 375–393. MR 967645, DOI 10.1017/S0143385700009494
- Dietmar Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), no. 1, 1–41. MR 797044, DOI 10.1090/S0002-9947-1985-0797044-3
- Andrzej Szymczak, The Conley index for decompositions of isolated invariant sets, Fund. Math. 148 (1995), no. 1, 71–90. MR 1354939, DOI 10.4064/fm-148-1-71-90
- A. Szymczak, The Conley index for discrete semidynamical systems, Topology Appl. 66 (1995), no. 3, 215–240. MR 1359514, DOI 10.1016/0166-8641(95)0003J-S
- Andrzej Szymczak, The Conley index and symbolic dynamics, Topology 35 (1996), no. 2, 287–299. MR 1380498, DOI 10.1016/0040-9383(95)00029-1
- V. A. Ufnarovskiĭ and G. P. Chekanu, Nilpotent matrices, Mat. Issled. 85, Algebry, Kol′tsa i Topologii (1985), 130–141, 155 (Russian). MR 836086
- Frank W. Warner, Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, vol. 94, Springer-Verlag, New York-Berlin, 1983. Corrected reprint of the 1971 edition. MR 722297
- R. F. Williams, Classification of one dimensional attractors, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 341–361. MR 0266227
- Jim Wiseman, Symbolic dynamics from signed matrices, preprint, 2001.
- Piotr Zgliczyński, Computer assisted proof of chaos in the Rössler equations and in the Hénon map, Nonlinearity 10 (1997), no. 1, 243–252. MR 1430751, DOI 10.1088/0951-7715/10/1/016
Bibliographic Information
- Jim Wiseman
- Affiliation: Northwestern University, Evanston, Illinois 60208
- Address at time of publication: Department of Mathematics and Statistics, Swarthmore College, 500 College Ave., Swarthmore, Pennsylvania 19081
- MR Author ID: 668909
- Email: jwisema1@swarthmore.edu
- Received by editor(s): August 5, 2001
- Received by editor(s) in revised form: March 28, 2002
- Published electronically: August 1, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 4953-4968
- MSC (2000): Primary 37B30; Secondary 37B10, 54H20
- DOI: https://doi.org/10.1090/S0002-9947-02-03063-5
- MathSciNet review: 1926844