A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula
HTML articles powered by AMS MathViewer
- by K. S. Ryu and M. K. Im
- Trans. Amer. Math. Soc. 354 (2002), 4921-4951
- DOI: https://doi.org/10.1090/S0002-9947-02-03077-5
- Published electronically: July 23, 2002
- PDF | Request permission
Abstract:
In this article, we consider a complex-valued and a measure-valued measure on $C [0,t]$, the space of all real-valued continuous functions on $[0,t]$. Using these concepts, we establish the measure-valued Feynman-Kac formula and we prove that this formula satisfies a Volterra integral equation. The work here is patterned to some extent on earlier works by Kluvanek in 1983 and by Lapidus in 1987, but the present setting requires a number of new concepts and results.References
- Claude W. Burrill, Measure, integration, and probability, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1972. MR 0457657
- R. H. Cameron and D. A. Storvick, An operator valued function space integral and a related integral equation, J. Math. Mech. 18 (1968), 517–552. MR 0236347, DOI 10.1512/iumj.1969.18.18041
- Donald L. Cohn, Measure theory, Birkhäuser, Boston, Mass., 1980. MR 578344
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Edwin Hewitt and Karl Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965. MR 0188387
- Gerald W. Johnson and Michel L. Lapidus, Generalized Dyson series, generalized Feynman diagrams, the Feynman integral and Feynman’s operational calculus, Mem. Amer. Math. Soc. 62 (1986), no. 351, vi+78. MR 849943, DOI 10.1090/memo/0351
- Gerald W. Johnson and Michel L. Lapidus, The Feynman integral and Feynman’s operational calculus, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. Oxford Science Publications. MR 1771173
- I. Kluvánek, Operator valued measures and perturbations of semigroups, Arch. Rational Mech. Anal. 81 (1983), no. 2, 161–180. MR 682267, DOI 10.1007/BF00250650
- Igor Kluvánek and Greg Knowles, Vector measures and control systems, North-Holland Mathematics Studies, Vol. 20, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1976. MR 0499068
- Michel L. Lapidus, The Feynman-Kac formula with a Lebesgue-Stieltjes measure and Feynman’s operational calculus, Stud. Appl. Math. 76 (1987), no. 2, 93–132. MR 965739, DOI 10.1002/sapm198776293
- Michel L. Lapidus, Strong product integration of measures and the Feynman-Kac formula with a Lebesgue-Stieltjes measure, Rend. Circ. Mat. Palermo (2) Suppl. 17 (1987), 271–312 (1988). Functional integration with emphasis on the Feynman integral (Sherbrooke, PQ, 1986). MR 950421
- Michel L. Lapidus, The Feynman-Kac formula with a Lebesgue-Stieltjes measure: an integral equation in the general case, Integral Equations Operator Theory 12 (1989), no. 2, 163–210. MR 986594, DOI 10.1007/BF01195113
- D. R. Lewis, Integration with respect to vector measures, Pacific J. Math. 33 (1970), 157–165. MR 259064
- W. P. Novinger, Mean convergence in $L^{p}$ spaces, Proc. Amer. Math. Soc. 34 (1972), 627–628. MR 294595, DOI 10.1090/S0002-9939-1972-0294595-1
- G. O. Okikiolu, Aspects of the theory of bounded integral operators in $L^{p}$-spaces, Academic Press, London-New York, 1971. MR 0445237
- K. R. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967. MR 0226684
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Wiener, N., Differential space, J. Math. Phys., 2, 1923, 131-174.
- J. Yeh, Inversion of conditional expectations, Pacific J. Math. 52 (1974), 631–640. MR 365644
- J. Yeh, Stochastic processes and the Wiener integral, Pure and Applied Mathematics, Vol. 13, Marcel Dekker, Inc., New York, 1973. MR 0474528
- Kôsaku Yosida, Functional analysis, 4th ed., Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag, New York-Heidelberg, 1974. MR 0350358
Bibliographic Information
- K. S. Ryu
- Affiliation: Department of Mathematics, Han Nam University, Taejon 306-791, Korea
- Email: ksr@math.hannam.ac.kr
- M. K. Im
- Affiliation: Department of Mathematics, Han Nam University, Taejon 306-791, Korea
- Email: mki@mail.hannam.ac.kr
- Received by editor(s): December 18, 2001
- Received by editor(s) in revised form: April 1, 2002
- Published electronically: July 23, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 354 (2002), 4921-4951
- MSC (2000): Primary 28C35, 28C20, 45D05, 47A56
- DOI: https://doi.org/10.1090/S0002-9947-02-03077-5
- MathSciNet review: 1926843
Dedicated: Dedicated to Professor Kun Soo Chang on his sixtieth birthday