On the minimal free resolution of general forms
Authors:
J. Migliore and R. M. Miró-Roig
Journal:
Trans. Amer. Math. Soc. 355 (2003), 1-36
MSC (2000):
Primary 13D02, 13D40; Secondary 13P10, 13C40, 13H10
DOI:
https://doi.org/10.1090/S0002-9947-02-03092-1
Published electronically:
August 28, 2002
MathSciNet review:
1928075
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let and let
be the ideal of
generically chosen forms of degrees
. We give the precise graded Betti numbers of
in the following cases:
;
and
is even;
,
is odd and
;
is even and all generators have the same degree,
, which is even;
-
is even and
;
-
is odd,
is even,
and
.


- 1. David J. Anick, Thin algebras of embedding dimension three, J. Algebra 100 (1986), no. 1, 235–259. MR 839581, https://doi.org/10.1016/0021-8693(86)90076-1
- 2. Marc Aubry, Série de Hilbert d’une algèbre de polynômes quotient, J. Algebra 176 (1995), no. 2, 392–416 (French, with English summary). MR 1351616, https://doi.org/10.1006/jabr.1995.1251
- 3. D. Bayer and M. Stillman, Macaulay: A system for computation in algebraic geometry and commutative algebra. Source and object code available for Unix and Macintosh computers. Contact the authors, or download from ftp://math.harvard.edu via anonymous ftp.
- 4. Anna Maria Bigatti, Upper bounds for the Betti numbers of a given Hilbert function, Comm. Algebra 21 (1993), no. 7, 2317–2334. MR 1218500, https://doi.org/10.1080/00927879308824679
- 5. Mats Boij, Betti numbers of compressed level algebras, J. Pure Appl. Algebra 134 (1999), no. 2, 111–131. MR 1663785, https://doi.org/10.1016/S0022-4049(97)90163-8
- 6. Mats Boij, Gorenstein Artin algebras and points in projective space, Bull. London Math. Soc. 31 (1999), no. 1, 11–16. MR 1651033, https://doi.org/10.1112/S0024609398004925
- 7. David A. Buchsbaum and David Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), no. 3, 447–485. MR 453723, https://doi.org/10.2307/2373926
- 8. K. Chandler, The Geometric Fröberg-Iarrobino Conjecture, in preparation.
- 9. E. D. Davis, A. V. Geramita, and F. Orecchia, Gorenstein algebras and the Cayley-Bacharach theorem, Proc. Amer. Math. Soc. 93 (1985), no. 4, 593–597. MR 776185, https://doi.org/10.1090/S0002-9939-1985-0776185-6
- 10. Susan J. Diesel, Irreducibility and dimension theorems for families of height 3 Gorenstein algebras, Pacific J. Math. 172 (1996), no. 2, 365–397. MR 1386623
- 11. David Eisenbud and Shiro Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), no. 1, 89–133. MR 741934, https://doi.org/10.1016/0021-8693(84)90092-9
- 12. David Eisenbud and Sorin Popescu, Gale duality and free resolutions of ideals of points, Invent. Math. 136 (1999), no. 2, 419–449. MR 1688433, https://doi.org/10.1007/s002220050315
- 13. Carl Jacobsson, Andrew R. Kustin, and Matthew Miller, The Poincaré series of a codimension four Gorenstein ring is rational, J. Pure Appl. Algebra 38 (1985), no. 2-3, 255–275. MR 814181, https://doi.org/10.1016/0022-4049(85)90013-1
- 14. Ralf Fröberg and Joachim Hollman, Hilbert series for ideals generated by generic forms, J. Symbolic Comput. 17 (1994), no. 2, 149–157. MR 1283740, https://doi.org/10.1006/jsco.1994.1008
- 15. R. Fröberg and D. Laksov, Compressed algebras, Complete intersections (Acireale, 1983), 121-151, Lecture Notes in Math., 1092, Springer, Berlin, 1984.
- 16. Tadahito Harima, Characterization of Hilbert functions of Gorenstein Artin algebras with the weak Stanley property, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3631–3638. MR 1307527, https://doi.org/10.1090/S0002-9939-1995-1307527-7
- 17.
T. Harima, J. Migliore, U. Nagel and J. Watanabe, The Weak and Strong Lefschetz properties for Artinian
-algebras, to appear in J. Algebra.
- 18. André Hirschowitz and Carlos Simpson, La résolution minimale de l’idéal d’un arrangement général d’un grand nombre de points dans 𝑃ⁿ, Invent. Math. 126 (1996), no. 3, 467–503 (French). MR 1419005, https://doi.org/10.1007/s002220050107
- 19. David J. Anick, Thin algebras of embedding dimension three, J. Algebra 100 (1986), no. 1, 235–259. MR 839581, https://doi.org/10.1016/0021-8693(86)90076-1
- 20. Heather A. Hulett, Maximum Betti numbers of homogeneous ideals with a given Hilbert function, Comm. Algebra 21 (1993), no. 7, 2335–2350. MR 1218501, https://doi.org/10.1080/00927879308824680
- 21. A. Iarrobino, Inverse system of a symbolic power. III. Thin algebras and fat points, Compositio Math. 108 (1997), no. 3, 319–356. MR 1473851, https://doi.org/10.1023/A:1000155612073
- 22. Anthony Iarrobino and Vassil Kanev, Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics, vol. 1721, Springer-Verlag, Berlin, 1999. Appendix C by Iarrobino and Steven L. Kleiman. MR 1735271
- 23. Anna Lorenzini, The minimal resolution conjecture, J. Algebra 156 (1993), no. 1, 5–35. MR 1213782, https://doi.org/10.1006/jabr.1993.1060
- 24. Juan C. Migliore, Introduction to liaison theory and deficiency modules, Progress in Mathematics, vol. 165, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1712469
- 25. J. Migliore and U. Nagel, Reduced arithmetically Gorenstein schemes and simplicial polytopes with maximal Betti numbers, to appear in Adv. Math.
- 26. Keith Pardue and Ben Richert, Resolutions of Generic Ideals, in preparation.
- 27. C. Peskine and L. Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), 271–302 (French). MR 364271, https://doi.org/10.1007/BF01425554
- 28. Richard P. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods 1 (1980), no. 2, 168–184. MR 578321, https://doi.org/10.1137/0601021
- 29. Junzo Watanabe, The Dilworth number of Artinian rings and finite posets with rank function, Commutative algebra and combinatorics (Kyoto, 1985) Adv. Stud. Pure Math., vol. 11, North-Holland, Amsterdam, 1987, pp. 303–312. MR 951211, https://doi.org/10.2969/aspm/01110303
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 13D02, 13D40, 13P10, 13C40, 13H10
Retrieve articles in all journals with MSC (2000): 13D02, 13D40, 13P10, 13C40, 13H10
Additional Information
J. Migliore
Affiliation:
Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
Email:
Juan.C.Migliore.1@nd.edu
R. M. Miró-Roig
Affiliation:
Facultat de Matemàtiques, Departament d’Algebra i Geometria, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
Email:
miro@cerber.mat.ub.es
DOI:
https://doi.org/10.1090/S0002-9947-02-03092-1
Received by editor(s):
October 1, 2001
Received by editor(s) in revised form:
March 10, 2002
Published electronically:
August 28, 2002
Additional Notes:
The first author was partially supported by the University of Barcelona
The second author was partially supported by BFM2001-3584
Article copyright:
© Copyright 2002
American Mathematical Society