The space $H^1$ for nondoubling measures in terms of a grand maximal operator
HTML articles powered by AMS MathViewer
- by Xavier Tolsa
- Trans. Amer. Math. Soc. 355 (2003), 315-348
- DOI: https://doi.org/10.1090/S0002-9947-02-03131-8
- Published electronically: September 11, 2002
- PDF | Request permission
Abstract:
Let $\mu$ be a Radon measure on $\mathbb {R}^d$, which may be nondoubling. The only condition that $\mu$ must satisfy is the size condition $\mu (B(x,r))\leq C r^n$, for some fixed $0<n\leq d$. Recently, some spaces of type $B\!M\!O(\mu )$ and $H^1(\mu )$ were introduced by the author. These new spaces have properties similar to those of the classical spaces $BMO$ and $H^1$ defined for doubling measures, and they have proved to be useful for studying the $L^p(\mu )$ boundedness of Calderón-Zygmund operators without assuming doubling conditions. In this paper a characterization of the new atomic Hardy space $H^1(\mu )$ in terms of a maximal operator $M_\Phi$ is given. It is shown that $f$ belongs to $H^1(\mu )$ if and only if $f\in L^1(\mu )$, $\int f d\mu =0$ and $M_\Phi f \in L^1(\mu )$, as in the usual doubling situation.References
- Lennart Carleson, Two remarks on $H^{1}$ and BMO, Advances in Math. 22 (1976), no. 3, 269–277. MR 477058, DOI 10.1016/0001-8708(76)90095-5
- Ronald R. Coifman, A real variable characterization of $H^{p}$, Studia Math. 51 (1974), 269–274. MR 358318, DOI 10.4064/sm-51-3-269-274
- Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. MR 447954, DOI 10.1090/S0002-9904-1977-14325-5
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- Jean-Lin Journé, Calderón-Zygmund operators, pseudodifferential operators and the Cauchy integral of Calderón, Lecture Notes in Mathematics, vol. 994, Springer-Verlag, Berlin, 1983. MR 706075, DOI 10.1007/BFb0061458
- Robert H. Latter, A characterization of $H^{p}(\textbf {R}^{n})$ in terms of atoms, Studia Math. 62 (1978), no. 1, 93–101. MR 482111, DOI 10.4064/sm-62-1-93-101
- Roberto A. Macías and Carlos Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), no. 3, 257–270. MR 546295, DOI 10.1016/0001-8708(79)90012-4
- Roberto A. Macías and Carlos Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), no. 3, 257–270. MR 546295, DOI 10.1016/0001-8708(79)90012-4
- J. Mateu, P. Mattila, A. Nicolau, and J. Orobitg, BMO for nondoubling measures, Duke Math. J. 102 (2000), no. 3, 533–565. MR 1756109, DOI 10.1215/S0012-7094-00-10238-4
- F. Nazarov, S. Treil, and A. Volberg, Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices 15 (1997), 703–726. MR 1470373, DOI 10.1155/S1073792897000469
- F. Nazarov, S. Treil, and A. Volberg, Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices 9 (1998), 463–487. MR 1626935, DOI 10.1155/S1073792898000312
- F. Nazarov, S. Treil, and A. Volberg. $Tb$-theorem on non-homogeneous spaces. Preprint (1999).
- F. Nazarov, S. Treil, and A. Volberg. Accretive $Tb$-systems on non-homogeneous spaces, Duke Math J. 113 (2002), 259-312.
- J. Orobitg and C. Pérez. $A_p$ weights for nondoubling measures in $\mathbb {R}^n$ and applications. Trans. Amer. Math. Soc. 354 (2002), 2013–2033.
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Xavier Tolsa, $L^2$-boundedness of the Cauchy integral operator for continuous measures, Duke Math. J. 98 (1999), no. 2, 269–304. MR 1695200, DOI 10.1215/S0012-7094-99-09808-3
- X. Tolsa. A $T(1)$ theorem for non doubling measures with atoms. Proc. London Math. Soc. 82 (2001), 195-228.
- Xavier Tolsa, BMO, $H^1$, and Calderón-Zygmund operators for non doubling measures, Math. Ann. 319 (2001), no. 1, 89–149. MR 1812821, DOI 10.1007/PL00004432
- Xavier Tolsa, A proof of the weak $(1,1)$ inequality for singular integrals with non doubling measures based on a Calderón-Zygmund decomposition, Publ. Mat. 45 (2001), no. 1, 163–174. MR 1829582, DOI 10.5565/PUBLMAT_{4}5101_{0}7
- X. Tolsa. Characterización of the atomic space $H^1$ for non doubling measures in terms of a grand maximal operator. Chalmers Univ. of Technology, Mathematics, Preprint 2000:2. http://www.math.chalmers.se/Math/Research/Preprints/.
- Joan Verdera, On the $T(1)$-theorem for the Cauchy integral, Ark. Mat. 38 (2000), no. 1, 183–199. MR 1749365, DOI 10.1007/BF02384497
- Akihito Uchiyama, A maximal function characterization of $H^{p}$ on the space of homogeneous type, Trans. Amer. Math. Soc. 262 (1980), no. 2, 579–592. MR 586737, DOI 10.1090/S0002-9947-1980-0586737-4
Bibliographic Information
- Xavier Tolsa
- Affiliation: Département de Mathématique, Bâtiment 425, Université de Paris-Sud, 91405 Orsay-Cedex, France
- Address at time of publication: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- MR Author ID: 639506
- ORCID: 0000-0001-7976-5433
- Email: xtolsa@mat.uab.es
- Received by editor(s): October 31, 2000
- Published electronically: September 11, 2002
- Additional Notes: Supported by a postdoctoral grant from the European Commission for the TMR Network “Harmonic Analysis”. Also partially supported by grants DGICYT PB96-1183 and CIRIT 1998-SGR00052 (Spain)
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 315-348
- MSC (2000): Primary 42B20; Secondary 42B30
- DOI: https://doi.org/10.1090/S0002-9947-02-03131-8
- MathSciNet review: 1928090