Formulas for tamely ramified supercuspidal characters of $\operatorname {GL}_3$
HTML articles powered by AMS MathViewer
- by Tetsuya Takahashi
- Trans. Amer. Math. Soc. 355 (2003), 567-591
- DOI: https://doi.org/10.1090/S0002-9947-02-03099-4
- Published electronically: October 4, 2002
- PDF | Request permission
Abstract:
Let $F$ denote a $p$-adic local field of residual characteristic $p\ne 3$. This article gives formulas, valid on the regular elliptic set, for the irreducible supercuspidal characters of $\operatorname {GL}_3(F)$ which correspond to characters of a ramified Cartan subgroup. In the case in which $F$ does not contain cube roots of unity, i.e., the case in which ramified cubic extensions of degree $3$ over $F$ cannot be Galois, base change results concerning “simple types" due to Bushnell and Henniart (1996) are used in the proofs.References
- James Arthur and Laurent Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton University Press, Princeton, NJ, 1989. MR 1007299
- A. Badulescu, Correspondance entre $\mathrm {GL}_n$ et ses formes intérieures en caractéristique positive, Thèse, Université de Paris-sud, Centre d’Orsay, 1999.
- Colin J. Bushnell and Albrecht Fröhlich, Gauss sums and $p$-adic division algebras, Lecture Notes in Mathematics, vol. 987, Springer-Verlag, Berlin-New York, 1983. MR 701540, DOI 10.1007/BFb0066413
- Colin J. Bushnell and Guy Henniart, Local tame lifting for $\textrm {GL}(N)$. I. Simple characters, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 105–233. MR 1423022, DOI 10.1007/BF02698646
- H. Carayol, Représentations cuspidales du groupe linéaire, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 2, 191–225 (French). MR 760676, DOI 10.24033/asens.1470
- Lawrence Corwin and Roger E. Howe, Computing characters of tamely ramified $p$-adic division algebras, Pacific J. Math. 73 (1977), no. 2, 461–477. MR 492084, DOI 10.2140/pjm.1977.73.461
- Lawrence Corwin, Allen Moy, and Paul J. Sally Jr., Supercuspidal character formulas for $\textrm {GL}_l$, Representation theory and harmonic analysis (Cincinnati, OH, 1994) Contemp. Math., vol. 191, Amer. Math. Soc., Providence, RI, 1995, pp. 1–11. MR 1365530, DOI 10.1090/conm/191/02321
- P. Deligne, D. Kazhdan, and M.-F. Vignéras, Représentations des algèbres centrales simples $p$-adiques, Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 33–117 (French). MR 771672
- Roger Godement and Hervé Jacquet, Zeta functions of simple algebras, Lecture Notes in Mathematics, Vol. 260, Springer-Verlag, Berlin-New York, 1972. MR 0342495, DOI 10.1007/BFb0070263
- Guy Henniart, Correspondance de Jacquet-Langlands explicite. I. Le cas modéré de degré premier, Séminaire de Théorie des Nombres, Paris, 1990–91, Progr. Math., vol. 108, Birkhäuser Boston, Boston, MA, 1993, pp. 85–114 (French). MR 1263525
- Roger E. Howe, Kirillov theory for compact $p$-adic groups, Pacific J. Math. 73 (1977), no. 2, 365–381. MR 579176, DOI 10.2140/pjm.1977.73.365
- Roger E. Howe, Tamely ramified supercuspidal representations of $\textrm {Gl}_{n}$, Pacific J. Math. 73 (1977), no. 2, 437–460. MR 492087, DOI 10.2140/pjm.1977.73.437
- Hidegorô Nakano, Über Abelsche Ringe von Projektionsoperatoren, Proc. Phys.-Math. Soc. Japan (3) 21 (1939), 357–375 (German). MR 94
- Hervé Jacquet, Ilja Iosifovitch Piatetski-Shapiro, and Joseph Shalika, Automorphic forms on $\textrm {GL}(3)$. I, Ann. of Math. (2) 109 (1979), no. 1, 169–212. MR 519356, DOI 10.2307/1971270
- Philip Kutzko, Character formulas for supercuspidal representations of $\textrm {GL}_l,\;l$ a prime, Amer. J. Math. 109 (1987), no. 2, 201–221. MR 882420, DOI 10.2307/2374571
- Allen Moy, Local constants and the tame Langlands correspondence, Amer. J. Math. 108 (1986), no. 4, 863–930. MR 853218, DOI 10.2307/2374518
- Fiona Murnaghan, Asymptotic behaviour of supercuspidal characters of $p$-adic $\textrm {GL}_3$ and $\textrm {GL}_4$: the generic unramified case, Pacific J. Math. 148 (1991), no. 1, 107–130. MR 1091533, DOI 10.2140/pjm.1991.148.107
- Jonathan D. Rogawski, Representations of $\textrm {GL}(n)$ and division algebras over a $p$-adic field, Duke Math. J. 50 (1983), no. 1, 161–196. MR 700135
- Tetsuya Takahashi, Characters of cuspidal unramified series for central simple algebras of prime degree, J. Math. Kyoto Univ. 32 (1992), no. 4, 873–888. MR 1194118, DOI 10.1215/kjm/1250519411
- Tetsuya Takahashi, Character formula for representations of local quaternion algebras (wildly ramified case), J. Math. Kyoto Univ. 36 (1996), no. 1, 151–197. MR 1381546, DOI 10.1215/kjm/1250518611
- Tetsuya Takahashi, On the irreducible very cuspidal representations. II, J. Math. Kyoto Univ. 36 (1996), no. 4, 889–910. MR 1443755, DOI 10.1215/kjm/1250518459
- Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. MR 0450380, DOI 10.1007/978-1-4684-9458-7
Bibliographic Information
- Tetsuya Takahashi
- Affiliation: Department of Mathematics and Information, College of Integrated Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho Sakai, 599-8531, Japan
- Email: takahasi@mi.cias.osakafu-u.ac.jp
- Received by editor(s): September 28, 1998
- Received by editor(s) in revised form: May 2, 2002
- Published electronically: October 4, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 567-591
- MSC (2000): Primary 22E50; Secondary 11F70
- DOI: https://doi.org/10.1090/S0002-9947-02-03099-4
- MathSciNet review: 1932714