Resolutions of ideals of quasiuniform fat point subschemes of $\mathbf P^2$
HTML articles powered by AMS MathViewer
- by Brian Harbourne, Sandeep Holay and Stephanie Fitchett
- Trans. Amer. Math. Soc. 355 (2003), 593-608
- DOI: https://doi.org/10.1090/S0002-9947-02-03124-0
- Published electronically: October 4, 2002
- PDF | Request permission
Abstract:
The notion of a quasiuniform fat point subscheme $Z\subset \mathbf P^2$ is introduced and conjectures for the Hilbert function and minimal free resolution of the ideal $I$ defining $Z$ are put forward. In a large range of cases, it is shown that the Hilbert function conjecture implies the resolution conjecture. In addition, the main result gives the first determination of the resolution of the $m$th symbolic power $I(m;n)$ of an ideal defining $n$ general points of $\mathbf P^2$ when both $m$ and $n$ are large (in particular, for infinitely many $m$ for each of infinitely many $n$, and for infinitely many $n$ for every $m>2$). Resolutions in other cases, such as âfat points with tailsâ, are also given. Except where an explicit exception is made, all results hold for an arbitrary algebraically closed field $k$. As an incidental result, a bound for the regularity of $I(m;n)$ is given which is often a significant improvement on previously known bounds.References
- J. Alexander and A. Hirschowitz, An asymptotic vanishing theorem for generic unions of multiple points, Invent. Math. 140 (2000), no. 2, 303â325. MR 1756998, DOI 10.1007/s002220000053
- Giulio Campanella, Standard bases of perfect homogeneous polynomial ideals of height $2$, J. Algebra 101 (1986), no. 1, 47â60. MR 843689, DOI 10.1016/0021-8693(86)90095-5
- Maria Virginia Catalisano, âFatâ points on a conic, Comm. Algebra 19 (1991), no. 8, 2153â2168. MR 1123117, DOI 10.1080/00927879108824252
- Ciro Ciliberto and Rick Miranda, Degenerations of planar linear systems, J. Reine Angew. Math. 501 (1998), 191â220. MR 1637857
- Ciro Ciliberto and Rick Miranda, Linear systems of plane curves with base points of equal multiplicity, Trans. Amer. Math. Soc. 352 (2000), no. 9, 4037â4050. MR 1637062, DOI 10.1090/S0002-9947-00-02416-8
- Edward D. Davis, Anthony V. Geramita, and Paolo Maroscia, Perfect homogeneous ideals: Dubreilâs theorems revisited, Bull. Sci. Math. (2) 108 (1984), no. 2, 143â185 (English, with French summary). MR 769926
- P. Dubreil. Sur quelques propriĂ©tĂ©s des systĂšmes de points dans le plan et des courbes gauches algĂ©briques, Bull. Soc. Math. France, 61 (1933), 258â283.
- Evain Laurent, La fonction de Hilbert de la rĂ©union de $4^h$ gros points gĂ©nĂ©riques de $\textbf {P}^2$ de mĂȘme multiplicitĂ©, J. Algebraic Geom. 8 (1999), no. 4, 787â796 (French, with French summary). MR 1703614
- Stephanie Fitchett, On bounding the number of generators for fat point ideals on the projective plane, J. Algebra 236 (2001), no. 2, 502â521. MR 1813489, DOI 10.1006/jabr.2000.8516
- Stephanie Fitchett, Maps of linear systems on blow-ups of the projective plane, J. Pure Appl. Algebra 156 (2001), no. 1, 1â14. MR 1807013, DOI 10.1016/S0022-4049(99)00115-2
- Stephanie Fitchett, Brian Harbourne, and Sandeep Holay, Resolutions of fat point ideals involving eight general points of $\textbf {P}^2$, J. Algebra 244 (2001), no. 2, 684â705. MR 1859044, DOI 10.1006/jabr.2001.8931
- A. V. Geramita, D. Gregory, and L. Roberts, Monomial ideals and points in projective space, J. Pure Appl. Algebra 40 (1986), no. 1, 33â62. MR 825180, DOI 10.1016/0022-4049(86)90029-0
- A. V. Geramita and F. Orecchia, Minimally generating ideals defining certain tangent cones, J. Algebra 78 (1982), no. 1, 36â57. MR 677711, DOI 10.1016/0021-8693(82)90101-6
- Alessandro Gimigliano, Our thin knowledge of fat points, The Curves Seminar at Queenâs, Vol. VI (Kingston, ON, 1989) Queenâs Papers in Pure and Appl. Math., vol. 83, Queenâs Univ., Kingston, ON, 1989, pp. Exp. No. B, 50. MR 1036032
- Alessandro Gimigliano, Regularity of linear systems of plane curves, J. Algebra 124 (1989), no. 2, 447â460. MR 1011606, DOI 10.1016/0021-8693(89)90142-7
- Brian Harbourne, The geometry of rational surfaces and Hilbert functions of points in the plane, Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conf. Proc., vol. 6, Amer. Math. Soc., Providence, RI, 1986, pp. 95â111. MR 846019
- Brian Harbourne, Iterated blow-ups and moduli for rational surfaces, Algebraic geometry (Sundance, UT, 1986) Lecture Notes in Math., vol. 1311, Springer, Berlin, 1988, pp. 101â117. MR 951643, DOI 10.1007/BFb0082911
- Brian Harbourne, Points in good position in $\textbf {P}^2$, Zero-dimensional schemes (Ravello, 1992) de Gruyter, Berlin, 1994, pp. 213â229. MR 1292487
- Brian Harbourne, Anticanonical rational surfaces, Trans. Amer. Math. Soc. 349 (1997), no. 3, 1191â1208. MR 1373636, DOI 10.1090/S0002-9947-97-01722-4
- Brian Harbourne, Free resolutions of fat point ideals on $\textbf {P}^2$, J. Pure Appl. Algebra 125 (1998), no. 1-3, 213â234. MR 1600024, DOI 10.1016/S0022-4049(96)00126-0
- Brian Harbourne, The ideal generation problem for fat points, J. Pure Appl. Algebra 145 (2000), no. 2, 165â182. MR 1733250, DOI 10.1016/S0022-4049(98)00077-2
- Brian Harbourne, An algorithm for fat points on $\mathbf P^2$, Canad. J. Math. 52 (2000), no. 1, 123â140. MR 1745704, DOI 10.4153/CJM-2000-006-6
- B. Harbourne. Problems and Progress: A survey on fat points in $\mathbf {P}^2$, Queenâs papers in Pure and Applied Mathematics, The Curves Seminar at Queenâs, vol. 123, 2002.
- B. Harbourne and J. Roé. Linear systems with multiple base points in $\mathbf {P}^2$, preprint (2001).
- AndrĂ© Hirschowitz, Une conjecture pour la cohomologie des diviseurs sur les surfaces rationnelles gĂ©nĂ©riques, J. Reine Angew. Math. 397 (1989), 208â213 (French). MR 993223, DOI 10.1515/crll.1989.397.208
- Monica IdĂ , The minimal free resolution for the first infinitesimal neighborhoods of $n$ general points in the plane, J. Algebra 216 (1999), no. 2, 741â753. MR 1692957, DOI 10.1006/jabr.1998.7772
- Rick Miranda, Linear systems of plane curves, Notices Amer. Math. Soc. 46 (1999), no. 2, 192â201. MR 1673756
- David Mumford, Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969) Edizioni Cremonese, Rome, 1970, pp. 29â100. MR 0282975
- Masayoshi Nagata, On the $14$-th problem of Hilbert, Amer. J. Math. 81 (1959), 766â772. MR 105409, DOI 10.2307/2372927
- Masayoshi Nagata, On rational surfaces. II, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 33 (1960/61), 271â293. MR 126444, DOI 10.1215/kjm/1250775912
- J. RoĂ©. Linear systems of plane curves with imposed multiple points, Illinois J. Math. 45 (2001), 895â906.
- Geng Xu, Ample line bundles on smooth surfaces, J. Reine Angew. Math. 469 (1995), 199â209. MR 1363830, DOI 10.1515/crll.1995.469.199
Bibliographic Information
- Brian Harbourne
- Affiliation: Department of Mathematics and Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0323
- MR Author ID: 217048
- Email: bharbour@math.unl.edu
- Sandeep Holay
- Affiliation: Department of Mathematics, Southeast Community College, Lincoln, Nebraska 68508
- Email: sholay@southeast.edu
- Stephanie Fitchett
- Affiliation: Florida Atlantic University, Honors College, Jupiter, Florida 33458
- Email: sfitchet@fau.edu
- Received by editor(s): December 31, 2000
- Received by editor(s) in revised form: May 2, 2002
- Published electronically: October 4, 2002
- Additional Notes: The first author benefitted from a National Science Foundation grant.
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 593-608
- MSC (2000): Primary 13P10, 14C99; Secondary 13D02, 13H15
- DOI: https://doi.org/10.1090/S0002-9947-02-03124-0
- MathSciNet review: 1932715