The double of a hyperbolic manifold and non-positively curved exotic structures
Author:
Pedro Ontaneda
Journal:
Trans. Amer. Math. Soc. 355 (2003), 935-965
MSC (2000):
Primary 53C20, 57Q25, 57R55
DOI:
https://doi.org/10.1090/S0002-9947-02-03076-3
Published electronically:
October 29, 2002
MathSciNet review:
1938740
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We give examples of non-compact finite volume real hyperbolic manifolds of dimension greater than five, such that their doubles admit at least three non-equivalent smoothable structures, two of which admit a Riemannian metric of non-positive curvature while the third does not. We also prove that the doubles of non-compact finite volume real hyperbolic manifolds of dimension greater than four are differentiably rigid.
- 1. C. S. Aravinda and F. T. Farrell, Rank 1 aspherical manifolds which do not support any nonpositively curved metric, Comm. Anal. Geom. 2 (1994), no. 1, 65–78. MR 1312678, https://doi.org/10.4310/CAG.1994.v2.n1.a4
- 2. Riccardo Benedetti and Carlo Petronio, Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992. MR 1219310
- 3. R. L. Bishop and B. O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1–49. MR 251664, https://doi.org/10.1090/S0002-9947-1969-0251664-4
- 4. Armand Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963), 111–122. MR 146301, https://doi.org/10.1016/0040-9383(63)90026-0
- 5. Armand Borel, Introduction aux groupes arithmétiques, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, No. 1341, Hermann, Paris, 1969 (French). MR 0244260
- 6. Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486
- 7. F. T. Farrell and L. E. Jones, Negatively curved manifolds with exotic smooth structures, J. Amer. Math. Soc. 2 (1989), no. 4, 899–908. MR 1002632, https://doi.org/10.1090/S0894-0347-1989-1002632-2
- 8. F. Thomas Farrell and Lowell E. Jones, Rigidity in geometry and topology, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 653–663. MR 1159252
- 9. F. T. Farrell and L. E. Jones, Exotic smoothings of hyperbolic manifolds which do not support pinched negative curvature, Proc. Amer. Math. Soc. 121 (1994), no. 2, 627–630. MR 1203985, https://doi.org/10.1090/S0002-9939-1994-1203985-6
- 10. Hiroshi Maehara and Ai Oshiro, On knotted necklaces of pearls, European J. Combin. 20 (1999), no. 5, 411–420. MR 1702378, https://doi.org/10.1006/eujc.1998.0279
- 11. Detlef Gromoll and Joseph A. Wolf, Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer. Math. Soc. 77 (1971), 545–552. MR 281122, https://doi.org/10.1090/S0002-9904-1971-12747-7
- 12. Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah; Annals of Mathematics Studies, No. 88. MR 0645390
- 13. H. Blaine Lawson Jr. and Shing Tung Yau, Compact manifolds of nonpositive curvature, J. Differential Geometry 7 (1972), 211–228. MR 334083
- 14. John J. Millson, On the first Betti number of a constant negatively curved manifold, Ann. of Math. (2) 104 (1976), no. 2, 235–247. MR 422501, https://doi.org/10.2307/1971046
- 15. Pedro Ontaneda, Hyperbolic manifolds with negatively curved exotic triangulations in dimension six, J. Differential Geom. 40 (1994), no. 1, 7–22. MR 1285528
- 16. C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69. MR 0350744
- 17. C. T. C. Wall, Surgery on compact manifolds, Academic Press, London-New York, 1970. London Mathematical Society Monographs, No. 1. MR 0431216
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53C20, 57Q25, 57R55
Retrieve articles in all journals with MSC (2000): 53C20, 57Q25, 57R55
Additional Information
Pedro Ontaneda
Affiliation:
Departamento de Matematica, Universidade Federal de Pernambuco, Cidade Universitaria, Recife, PE 50670-901, Brazil
Email:
ontaneda@dmat.ufpe.br
DOI:
https://doi.org/10.1090/S0002-9947-02-03076-3
Received by editor(s):
April 12, 2001
Received by editor(s) in revised form:
April 12, 2002
Published electronically:
October 29, 2002
Additional Notes:
This research was supported in part by CNPq, Brazil
Article copyright:
© Copyright 2002
American Mathematical Society