The double of a hyperbolic manifold and non-positively curved exotic $PL$ structures
HTML articles powered by AMS MathViewer
- by Pedro Ontaneda
- Trans. Amer. Math. Soc. 355 (2003), 935-965
- DOI: https://doi.org/10.1090/S0002-9947-02-03076-3
- Published electronically: October 29, 2002
- PDF | Request permission
Abstract:
We give examples of non-compact finite volume real hyperbolic manifolds of dimension greater than five, such that their doubles admit at least three non-equivalent smoothable $PL$ structures, two of which admit a Riemannian metric of non-positive curvature while the third does not. We also prove that the doubles of non-compact finite volume real hyperbolic manifolds of dimension greater than four are differentiably rigid.References
- C. S. Aravinda and F. T. Farrell, Rank $1$ aspherical manifolds which do not support any nonpositively curved metric, Comm. Anal. Geom. 2 (1994), no. 1, 65–78. MR 1312678, DOI 10.4310/CAG.1994.v2.n1.a4
- Riccardo Benedetti and Carlo Petronio, Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992. MR 1219310, DOI 10.1007/978-3-642-58158-8
- R. L. Bishop and B. O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1–49. MR 251664, DOI 10.1090/S0002-9947-1969-0251664-4
- Armand Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963), 111–122. MR 146301, DOI 10.1016/0040-9383(63)90026-0
- Armand Borel, Introduction aux groupes arithmétiques, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, No. 1341, Hermann, Paris, 1969 (French). MR 0244260
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- F. T. Farrell and L. E. Jones, Negatively curved manifolds with exotic smooth structures, J. Amer. Math. Soc. 2 (1989), no. 4, 899–908. MR 1002632, DOI 10.1090/S0894-0347-1989-1002632-2
- F. Thomas Farrell and Lowell E. Jones, Rigidity in geometry and topology, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 653–663. MR 1159252
- F. T. Farrell and L. E. Jones, Exotic smoothings of hyperbolic manifolds which do not support pinched negative curvature, Proc. Amer. Math. Soc. 121 (1994), no. 2, 627–630. MR 1203985, DOI 10.1090/S0002-9939-1994-1203985-6
- Hiroshi Maehara and Ai Oshiro, On knotted necklaces of pearls, European J. Combin. 20 (1999), no. 5, 411–420. MR 1702378, DOI 10.1006/eujc.1998.0279
- Detlef Gromoll and Joseph A. Wolf, Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer. Math. Soc. 77 (1971), 545–552. MR 281122, DOI 10.1090/S0002-9904-1971-12747-7
- Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematics Studies, No. 88, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah. MR 0645390
- H. Blaine Lawson Jr. and Shing Tung Yau, Compact manifolds of nonpositive curvature, J. Differential Geometry 7 (1972), 211–228. MR 334083
- John J. Millson, On the first Betti number of a constant negatively curved manifold, Ann. of Math. (2) 104 (1976), no. 2, 235–247. MR 422501, DOI 10.2307/1971046
- Pedro Ontaneda, Hyperbolic manifolds with negatively curved exotic triangulations in dimension six, J. Differential Geom. 40 (1994), no. 1, 7–22. MR 1285528
- C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69, Springer-Verlag, New York-Heidelberg, 1972. MR 0350744
- C. T. C. Wall, Surgery on compact manifolds, London Mathematical Society Monographs, No. 1, Academic Press, London-New York, 1970. MR 0431216
Bibliographic Information
- Pedro Ontaneda
- Affiliation: Departamento de Matematica, Universidade Federal de Pernambuco, Cidade Universitaria, Recife, PE 50670-901, Brazil
- MR Author ID: 352125
- Email: ontaneda@dmat.ufpe.br
- Received by editor(s): April 12, 2001
- Received by editor(s) in revised form: April 12, 2002
- Published electronically: October 29, 2002
- Additional Notes: This research was supported in part by CNPq, Brazil
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 935-965
- MSC (2000): Primary 53C20, 57Q25, 57R55
- DOI: https://doi.org/10.1090/S0002-9947-02-03076-3
- MathSciNet review: 1938740