Spherical maximal operator on symmetric spaces of constant curvature
HTML articles powered by AMS MathViewer
- by Amos Nevo and P. K. Ratnakumar
- Trans. Amer. Math. Soc. 355 (2003), 1167-1182
- DOI: https://doi.org/10.1090/S0002-9947-02-03095-7
- Published electronically: October 30, 2002
- PDF | Request permission
Abstract:
We prove an endpoint weak-type maximal inequality for the spherical maximal operator applied to radial funcions on symmetric spaces of constant curvature and dimension $n\ge 2$. More explicitly, in the Lorentz space associated with the natural isometry-invariant measure, we show that, for every radial function $f$, \[ \|{\mathcal M}f\|_{ n’,\infty }\leq C_n \|f \|_{n’,1}, n^\prime =\frac {n}{n-1}.\] The proof uses only geometric arguments and volume estimates, and applies uniformly in every dimension.References
- J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69–85. MR 874045, DOI 10.1007/BF02792533
- Jean Bourgain, Estimations de certaines fonctions maximales, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 10, 499–502 (French, with English summary). MR 812567
- Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802
- Michael G. Cowling, On Littlewood-Paley-Stein theory, Proceedings of the Seminar on Harmonic Analysis (Pisa, 1980), 1981, pp. 21–55. MR 639463
- M. COWLING and A. NEVO, Uniform estimates for spherical functions on complex semisimple Lie groups. Geometric and Functional Analysis 11 (2001), 900–932.
- Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
- Mogens Flensted-Jensen and Tom Koornwinder, The convolution structure for Jacobi function expansions, Ark. Mat. 11 (1973), 245–262. MR 340938, DOI 10.1007/BF02388521
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Sigurdur Helgason, Geometric analysis on symmetric spaces, Mathematical Surveys and Monographs, vol. 39, American Mathematical Society, Providence, RI, 1994. MR 1280714, DOI 10.1090/surv/039
- Noel J. Hicks, Notes on differential geometry, Van Nostrand Mathematical Studies, No. 3, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. MR 0179691
- Alexandru D. Ionescu, Fourier integral operators on noncompact symmetric spaces of real rank one, J. Funct. Anal. 174 (2000), no. 2, 274–300. MR 1767376, DOI 10.1006/jfan.2000.3572
- Birger Iversen, Hyperbolic geometry, London Mathematical Society Student Texts, vol. 25, Cambridge University Press, Cambridge, 1992. MR 1205776, DOI 10.1017/CBO9780511569333
- R. KERMAN and P. K. RATNAKUMAR, Spherical means of radial functions, Preprint.
- Tom H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, Special functions: group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, pp. 1–85. MR 774055
- Mark Leckband, A note on the spherical maximal operator for radial functions, Proc. Amer. Math. Soc. 100 (1987), no. 4, 635–640. MR 894429, DOI 10.1090/S0002-9939-1987-0894429-9
- Amos Nevo, Pointwise ergodic theorems for radial averages on simple Lie groups. I, Duke Math. J. 76 (1994), no. 1, 113–140. MR 1301188, DOI 10.1215/S0012-7094-94-07605-9
- Amos Nevo, Pointwise ergodic theorems for radial averages on simple Lie groups. II, Duke Math. J. 86 (1997), no. 2, 239–259. MR 1430433, DOI 10.1215/S0012-7094-97-08607-5
- Amos Nevo and Elias M. Stein, Analogs of Wiener’s ergodic theorems for semisimple groups. I, Ann. of Math. (2) 145 (1997), no. 3, 565–595. MR 1454704, DOI 10.2307/2951845
- Amos Nevo and Sundaram Thangavelu, Pointwise ergodic theorems for radial averages on the Heisenberg group, Adv. Math. 127 (1997), no. 2, 307–334. MR 1448717, DOI 10.1006/aima.1997.1641
- Elias M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174–2175. MR 420116, DOI 10.1073/pnas.73.7.2174
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Elias M. Stein and Stephen Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239–1295. MR 508453, DOI 10.1090/S0002-9904-1978-14554-6
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- Jan-Olov Strömberg, Weak type $L^{1}$ estimates for maximal functions on noncompact symmetric spaces, Ann. of Math. (2) 114 (1981), no. 1, 115–126. MR 625348, DOI 10.2307/1971380
- Alberto Torchinsky, Real-variable methods in harmonic analysis, Pure and Applied Mathematics, vol. 123, Academic Press, Inc., Orlando, FL, 1986. MR 869816
- N. J. Wildberger, Hypergroups, symmetric spaces, and wrapping maps, Probability measures on groups and related structures, XI (Oberwolfach, 1994) World Sci. Publ., River Edge, NJ, 1995, pp. 406–425. MR 1414949
Bibliographic Information
- Amos Nevo
- Affiliation: Institute of advanced studies in mathematics, Technion–Israel Institute of Technology, Haifa 32900, Israel
- Email: anevo@tx.technion.ac.il
- P. K. Ratnakumar
- Affiliation: Institute of advanced studies in mathematics, Technion–Israel Institute of Technology, Haifa 32900, Israel
- Email: pkrsm@uohyd.ernet.in
- Received by editor(s): June 5, 2000
- Published electronically: October 30, 2002
- Additional Notes: The first author was supported by Technion V.P.R. fund—E. and J. Bishop research fund, and the second author was supported by the fund for the promotion of research at the Technion.
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 1167-1182
- MSC (2000): Primary 43A85; Secondary 43A18
- DOI: https://doi.org/10.1090/S0002-9947-02-03095-7
- MathSciNet review: 1938751