Noetherian PI Hopf algebras are Gorenstein
HTML articles powered by AMS MathViewer
- by Q.-S. Wu and J. J. Zhang
- Trans. Amer. Math. Soc. 355 (2003), 1043-1066
- DOI: https://doi.org/10.1090/S0002-9947-02-03106-9
- Published electronically: October 24, 2002
- PDF | Request permission
Abstract:
We prove that every noetherian affine PI Hopf algebra has finite injective dimension, which answers a question of Brown (1998).References
- K. Ajitabh, S. P. Smith, and J. J. Zhang, Auslander-Gorenstein rings, Comm. Algebra 26 (1998), no. 7, 2159–2180. MR 1626582, DOI 10.1080/00927879808826267
- M. Artin, L. W. Small, and J. J. Zhang, Generic flatness for strongly Noetherian algebras, J. Algebra 221 (1999), no. 2, 579–610. MR 1728399, DOI 10.1006/jabr.1999.7997
- Kenneth A. Brown, Representation theory of Noetherian Hopf algebras satisfying a polynomial identity, Trends in the representation theory of finite-dimensional algebras (Seattle, WA, 1997) Contemp. Math., vol. 229, Amer. Math. Soc., Providence, RI, 1998, pp. 49–79. MR 1676211, DOI 10.1090/conm/229/03310
- K. A. Brown and K. R. Goodearl, Homological aspects of Noetherian PI Hopf algebras of irreducible modules and maximal dimension, J. Algebra 198 (1997), no. 1, 240–265. MR 1482982, DOI 10.1006/jabr.1997.7109
- Michel Demazure and Peter Gabriel, Introduction to algebraic geometry and algebraic groups, North-Holland Mathematics Studies, vol. 39, North-Holland Publishing Co., Amsterdam-New York, 1980. Translated from the French by J. Bell. MR 563524
- K. R. Goodearl and T. H. Lenagan, Catenarity in quantum algebras, J. Pure Appl. Algebra 111 (1996), no. 1-3, 123–142. MR 1394347, DOI 10.1016/0022-4049(95)00120-4
- K. R. Goodearl and R. B. Warfield Jr., An introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, vol. 16, Cambridge University Press, Cambridge, 1989. MR 1020298
- Friedrich Ischebeck, Eine Dualität zwischen den Funktoren Ext und Tor, J. Algebra 11 (1969), 510–531 (German). MR 237613, DOI 10.1016/0021-8693(69)90090-8
- Günter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Revised edition, Graduate Studies in Mathematics, vol. 22, American Mathematical Society, Providence, RI, 2000. MR 1721834, DOI 10.1090/gsm/022
- Richard G. Larson and David E. Radford, Finite-dimensional cosemisimple Hopf algebras in characteristic $0$ are semisimple, J. Algebra 117 (1988), no. 2, 267–289. MR 957441, DOI 10.1016/0021-8693(88)90107-X
- Richard G. Larson and David E. Radford, Semisimple cosemisimple Hopf algebras, Amer. J. Math. 110 (1988), no. 1, 187–195. MR 926744, DOI 10.2307/2374545
- Richard Gustavus Larson and Moss Eisenberg Sweedler, An associative orthogonal bilinear form for Hopf algebras, Amer. J. Math. 91 (1969), 75–94. MR 240169, DOI 10.2307/2373270
- Thierry Levasseur, Some properties of noncommutative regular graded rings, Glasgow Math. J. 34 (1992), no. 3, 277–300. MR 1181768, DOI 10.1017/S0017089500008843
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- Richard K. Molnar, A commutative Noetherian Hopf algebra over a field is finitely generated, Proc. Amer. Math. Soc. 51 (1975), 501–502. MR 376740, DOI 10.1090/S0002-9939-1975-0376740-5
- Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR 1243637, DOI 10.1090/cbms/082
- Warren D. Nichols and M. Bettina Richmond, Freeness of infinite-dimensional Hopf algebras, Comm. Algebra 20 (1992), no. 5, 1489–1492. MR 1157919, DOI 10.1080/00927879208824415
- Warren D. Nichols and M. Bettina Zoeller, A Hopf algebra freeness theorem, Amer. J. Math. 111 (1989), no. 2, 381–385. MR 987762, DOI 10.2307/2374514
- Ulrich Oberst and Hans-Jürgen Schneider, Untergruppen formeller Gruppen von endlichem Index, J. Algebra 31 (1974), 10–44 (German). MR 360610, DOI 10.1016/0021-8693(74)90003-9
- N. Popescu, Abelian categories with applications to rings and modules, London Mathematical Society Monographs, No. 3, Academic Press, London-New York, 1973. MR 0340375
- David E. Radford, Freeness (projectivity) criteria for Hopf algebras over Hopf subalgebras, J. Pure Appl. Algebra 11 (1977/78), no. 1-3, 15–28. MR 476790, DOI 10.1016/0022-4049(77)90035-4
- Joseph J. Rotman, An introduction to homological algebra, Pure and Applied Mathematics, vol. 85, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 538169
- Louis H. Rowen, Ring theory, Student edition, Academic Press, Inc., Boston, MA, 1991. MR 1095047
- L. W. Small, Rings satisfying a polynomial identity, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen [Lecture Notes in Mathematics at the University of Essen], vol. 5, Universität Essen, Fachbereich Mathematik, Essen, 1980. Written from notes taken by Christine Bessenrodt. MR 601386
- J. T. Stafford and J. J. Zhang, Homological properties of (graded) Noetherian $\textrm {PI}$ rings, J. Algebra 168 (1994), no. 3, 988–1026. MR 1293638, DOI 10.1006/jabr.1994.1267
- Mitsuhiro Takeuchi, A correspondence between Hopf ideals and sub-Hopf algebras, Manuscripta Math. 7 (1972), 251–270. MR 321963, DOI 10.1007/BF01579722
- Mitsuhiro Takeuchi, Relative Hopf modules—equivalences and freeness criteria, J. Algebra 60 (1979), no. 2, 452–471. MR 549940, DOI 10.1016/0021-8693(79)90093-0
- P. Vámos, On the minimal prime ideal of a tensor product of two fields, Math. Proc. Cambridge Philos. Soc. 84 (1978), no. 1, 25–35. MR 489566, DOI 10.1017/S0305004100054840
- Q.-S. Wu and J. J. Zhang, Homological identities for noncommutative rings, J. Algebra, 242 (2001), 516-535.
- Q.-S. Wu and J. J. Zhang, Gorenstein Property of Hopf Graded Algebras, Glasgow Math. J., (to appear).
- Q.-S. Wu and J. J. Zhang, Regularity of Involutory PI Hopf Algebras, J. Algebra, (to appear).
- Amnon Yekutieli, Dualizing complexes over noncommutative graded algebras, J. Algebra 153 (1992), no. 1, 41–84. MR 1195406, DOI 10.1016/0021-8693(92)90148-F
- Amnon Yekutieli and James J. Zhang, Rings with Auslander dualizing complexes, J. Algebra 213 (1999), no. 1, 1–51. MR 1674648, DOI 10.1006/jabr.1998.7657
- A. Yekutieli and J. J. Zhang, Residue complexes over noncommutative rings, J. Algebra, to appear. ArXiv: math.RA/0103075.
Bibliographic Information
- Q.-S. Wu
- Affiliation: Institute of Mathematics, Fudan University, Shanghai, 200433, China
- Email: qswu@fudan.edu.cn
- J. J. Zhang
- Affiliation: Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195
- MR Author ID: 314509
- Email: zhang@math.washington.edu
- Received by editor(s): May 22, 2002
- Published electronically: October 24, 2002
- Additional Notes: The first author was supported in part by the NSFC (project 10171016) and the second author was supported in part by the NSF
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 1043-1066
- MSC (2000): Primary 16E10, 16W30
- DOI: https://doi.org/10.1090/S0002-9947-02-03106-9
- MathSciNet review: 1938745