The Mori cones of moduli spaces of pointed curves of small genus
HTML articles powered by AMS MathViewer
- by Gavril Farkas and Angela Gibney
- Trans. Amer. Math. Soc. 355 (2003), 1183-1199
- DOI: https://doi.org/10.1090/S0002-9947-02-03165-3
- Published electronically: November 7, 2002
- PDF | Request permission
Abstract:
We compute the Mori cones of the moduli spaces $\overline M_{g,n}$ of $n$ pointed stable curves of genus $g$, when $g$ and $n$ are relatively small. For instance we show that for $g<14$ every curve in $\overline M_g$ is equivalent to an effective combination of the components of the locus of curves with $3g-4$ nodes. We completely describe the cone of nef divisors for the space $\overline M_{0,6}$, thus verifying Fulton’s conjecture for this space. Using this description we obtain a classification of all the fibrations of $\overline M_{0,6}$.References
- Enrico Arbarello and Maurizio Cornalba, Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Inst. Hautes Études Sci. Publ. Math. 88 (1998), 97–127 (1999). MR 1733327
- Carel Faber, Intersection-theoretical computations on $\overline {\scr M}_g$, Parameter spaces (Warsaw, 1994) Banach Center Publ., vol. 36, Polish Acad. Sci. Inst. Math., Warsaw, 1996, pp. 71–81. MR 1481481
- C. Faber, The nef cone of $\bar {M}_{0,6}$: a proof by inequalities only, preprint.
- A. Gibney, Fibrations of $\bar {M}_{g,n}$, Ph.D. Thesis, University of Texas, 2000.
- A. Gibney, S. Keel, I. Morrison, Towards the ample cone of $\bar {M}_{g,n}$, J. Amer. Math. Soc. 15(2002), 273-294.
- B. Hassett, Y. Tschinkel, On the effective cone of the moduli space of pointed rational curves, math.AG/0110231.
- Bruce Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Mathematics, vol. 1637, Springer-Verlag, Berlin, 1996. MR 1438547, DOI 10.1007/BFb0094399
- Joe Harris and Ian Morrison, Moduli of curves, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998. MR 1631825
- M. M. Kapranov, Veronese curves and Grothendieck-Knudsen moduli space $\overline M_{0,n}$, J. Algebraic Geom. 2 (1993), no. 2, 239–262. MR 1203685
- Sean Keel, Intersection theory of moduli space of stable $n$-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), no. 2, 545–574. MR 1034665, DOI 10.1090/S0002-9947-1992-1034665-0
- S. Keel, J. McKernan, Contractible extremal rays on $\bar {M}_{0,n}$, math.AG/9607009.
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180, DOI 10.1007/978-3-662-03276-3
- P. Vermeire, A counterexample to Fulton’s conjecture on $\bar {M}_{0,n}$, J. of Algebra 248(2002), 780-784.
Bibliographic Information
- Gavril Farkas
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
- Email: gfarkas@umich.edu
- Angela Gibney
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
- MR Author ID: 689485
- Email: agibney@umich.edu
- Received by editor(s): February 25, 2002
- Published electronically: November 7, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 1183-1199
- MSC (2000): Primary 14H10
- DOI: https://doi.org/10.1090/S0002-9947-02-03165-3
- MathSciNet review: 1938752