Hyperbolic mean growth of bounded holomorphic functions in the ball
HTML articles powered by AMS MathViewer
- by E. G. Kwon
- Trans. Amer. Math. Soc. 355 (2003), 1269-1294
- DOI: https://doi.org/10.1090/S0002-9947-02-03169-0
- Published electronically: November 5, 2002
- PDF | Request permission
Abstract:
We consider the hyperbolic Hardy class $\varrho H^{p}(B)$, $0<p<\infty$. It consists of $\phi$ holomorphic in the unit complex ball $B$ for which $\vert \phi \vert < 1$ and \begin{equation*}\sup _{0<r<1} \int _{\partial B} \left \{ \varrho (\phi (r\zeta ), 0)\right \}^{p} d\sigma (\zeta ) ~<~ \infty ,\end{equation*} where $\varrho$ denotes the hyperbolic distance of the unit disc. The hyperbolic version of the Littlewood-Paley type $g$-function and the area function are defined in terms of the invariant gradient of $B$, and membership of $\varrho H^{p}(B)$ is expressed by the $L^{p}$ property of the functions. As an application, we can characterize the boundedness and the compactness of the composition operator $\mathcal {C}_{\phi }$, defined by $\mathcal {C}_{\phi }f = f\circ \phi$, from the Bloch space into the Hardy space $H^{p}(B)$.References
- Patrick Ahern, On the behavior near a torus of functions holomorphic in the ball, Pacific J. Math. 107 (1983), no. 2, 267–278. MR 705748
- Patrick Ahern and Joaquim Bruna, Maximal and area integral characterizations of Hardy-Sobolev spaces in the unit ball of $\textbf {C}^n$, Rev. Mat. Iberoamericana 4 (1988), no. 1, 123–153. MR 1009122, DOI 10.4171/RMI/66
- Patrick Ahern, Joaquim Bruna, and Carme Cascante, $H^p$-theory for generalized $M$-harmonic functions in the unit ball, Indiana Univ. Math. J. 45 (1996), no. 1, 103–135. MR 1406686, DOI 10.1512/iumj.1996.45.1961
- J. M. Anderson, J. Clunie, and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12–37. MR 361090
- Patrick Ahern and Walter Rudin, Bloch functions, BMO, and boundary zeros, Indiana Univ. Math. J. 36 (1987), no. 1, 131–148. MR 876995, DOI 10.1512/iumj.1987.36.36007
- Patrick Ahern and Walter Rudin, Paley-type gap theorems for $H^p$-functions on the ball, Indiana Univ. Math. J. 37 (1988), no. 2, 255–275. MR 963502, DOI 10.1512/iumj.1988.37.37013
- Aline Bonami, Joaquim Bruna, and Sandrine Grellier, On Hardy, BMO and Lipschitz spaces of invariantly harmonic functions in the unit ball, Proc. London Math. Soc. (3) 77 (1998), no. 3, 665–696. MR 1643425, DOI 10.1112/S0024611598000598
- Boo Rim Choe, Cauchy integral equalities and applications, Trans. Amer. Math. Soc. 315 (1989), no. 1, 337–352. MR 935531, DOI 10.1090/S0002-9947-1989-0935531-9
- Boo Rim Choe, Composition property of holomorphic functions on the ball, Michigan Math. J. 36 (1989), no. 2, 289–301. MR 1000531, DOI 10.1307/mmj/1029003950
- Jun Soo Choa and Boo Rim Choe, Composition with a homogeneous polynomial, Bull. Korean Math. Soc. 29 (1992), no. 1, 57–63. MR 1157245
- Jun Soo Choa and Hong Oh Kim, Composition with a nonhomogeneous bounded holomorphic function on the ball, Canad. J. Math. 41 (1989), no. 5, 870–881. MR 1015587, DOI 10.4153/CJM-1989-040-9
- Carl C. Cowen and Barbara D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397026
- Boo Rim Choe, Wade Ramey, and David Ullrich, Bloch-to-BMOA pullbacks on the disk, Proc. Amer. Math. Soc. 125 (1997), no. 10, 2987–2996. MR 1396971, DOI 10.1090/S0002-9939-97-03873-2
- R. R. Coifman, R. Rochberg, and Guido Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), no. 3, 611–635. MR 412721, DOI 10.2307/1970954
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
- E. G. Kwon, Composition of Blochs with bounded analytic functions, Proc. Amer. Math. Soc. 124 (1996), no. 5, 1473–1480. MR 1307542, DOI 10.1090/S0002-9939-96-03191-7
- E. G. Kwon, Fractional integration and the hyperbolic derivative, Bull. Austral. Math. Soc. 38 (1988), no. 3, 357–364. MR 966709, DOI 10.1017/S0004972700027714
- —, Holomorphic functions of Bergman BMO in the ball, preprint.
- E. G. Kwon, Mean growth of the hyperbolic Hardy class functions, Math. Japon. 35 (1990), no. 3, 451–460. MR 1058120
- E. G. Kwon, On analytic functions of Bergman BMO in the ball, Canad. Math. Bull. 42 (1999), no. 1, 97–103. MR 1695858, DOI 10.4153/CMB-1999-011-3
- E. G. Kwon and J. S. Choa, On hyperbolic Hardy class functions and composition operators, Kor. J. Math. Sciences 124 (1997), 119-126.
- Steven G. Krantz and Song-Ying Li, Area integral characterizations of functions in Hardy spaces on domains in $\mathbf C^n$, Complex Variables Theory Appl. 32 (1997), no. 4, 373–399. MR 1459599, DOI 10.1080/17476939708815004
- Shamil Makhmutov, Hyperbolic Besov functions, Sūrikaisekikenkyūsho K\B{o}kyūroku 946 (1996), 133–140. The structure of spaces of analytic and harmonic functions and the theory of operators on them (Japanese) (Kyoto, 1995). MR 1435304
- Miroslav Pavlović, Inequalities for the gradient of eigenfunctions of the invariant Laplacian in the unit ball, Indag. Math. (N.S.) 2 (1991), no. 1, 89–98. MR 1104834, DOI 10.1016/0019-3577(91)90044-8
- F. Pérez-González and J. Xiao, Bloch-Hardy pullbacks, preprint.
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- Wade Ramey and David Ullrich, Bounded mean oscillation of Bloch pull-backs, Math. Ann. 291 (1991), no. 4, 591–606. MR 1135533, DOI 10.1007/BF01445229
- Paula A. Russo, Boundary behavior of $\textrm {BMO}(B_n)$, Trans. Amer. Math. Soc. 292 (1985), no. 2, 733–740. MR 808751, DOI 10.1090/S0002-9947-1985-0808751-8
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Charles S. Stanton, $H^p$ and BMOA pullback properties of smooth maps, Indiana Univ. Math. J. 40 (1991), no. 4, 1251–1265. MR 1142713, DOI 10.1512/iumj.1991.40.40055
- Manfred Stoll, Invariant potential theory in the unit ball of $\textbf {C}^n$, London Mathematical Society Lecture Note Series, vol. 199, Cambridge University Press, Cambridge, 1994. MR 1297545, DOI 10.1017/CBO9780511526183
- Manfred Stoll, A characterization of Hardy spaces on the unit ball of $\textbf {C}^n$, J. London Math. Soc. (2) 48 (1993), no. 1, 126–136. MR 1223898, DOI 10.1112/jlms/s2-48.1.126
- Shinji Yamashita, Hyperbolic Hardy classes and hyperbolically Dirichlet-finite functions, Hokkaido Math. J. 10 (1981), no. Special Issue, 709–722. MR 662333
- Shinji Yamashita, Hyperbolic Hardy class $H^{1}$, Math. Scand. 45 (1979), no. 2, 261–266. MR 580604, DOI 10.7146/math.scand.a-11841
- Shinji Yamashita, Holomorphic functions of hyperbolically bounded mean oscillation, Boll. Un. Mat. Ital. B (6) 5 (1986), no. 3, 983–1000 (English, with Italian summary). MR 871709
- Shinji Yamashita, Smoothness of the boundary values of functions bounded and holomorphic in the disk, Trans. Amer. Math. Soc. 272 (1982), no. 2, 539–544. MR 662051, DOI 10.1090/S0002-9947-1982-0662051-5
- Ruhan Zhao, Composition operators from Bloch type spaces to Hardy and Besov spaces, J. Math. Anal. Appl. 233 (1999), no. 2, 749–766. MR 1689650, DOI 10.1006/jmaa.1999.6341
- Ke He Zhu, Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 139, Marcel Dekker, Inc., New York, 1990. MR 1074007
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- E. G. Kwon
- Affiliation: Department of Mathematics Education, Andong National University, Andong 760-749, S. Korea
- Email: egkwon@andong.ac.kr
- Received by editor(s): May 15, 2001
- Published electronically: November 5, 2002
- Additional Notes: This work was supported by grant No. R01-2000-000-00001-0 from the Basic Research Program of the Korea Science & Engineering Foundation.
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 1269-1294
- MSC (2000): Primary 30D45, 32A35, 47B33
- DOI: https://doi.org/10.1090/S0002-9947-02-03169-0
- MathSciNet review: 1938757