On the inversion of the convolution and Laplace transform
HTML articles powered by AMS MathViewer
- by Boris Baeumer
- Trans. Amer. Math. Soc. 355 (2003), 1201-1212
- DOI: https://doi.org/10.1090/S0002-9947-02-03174-4
- Published electronically: October 25, 2002
- PDF | Request permission
Abstract:
We present a new inversion formula for the classical, finite, and asymptotic Laplace transform $\hat f$ of continuous or generalized functions $f$. The inversion is given as a limit of a sequence of finite linear combinations of exponential functions whose construction requires only the values of $\hat f$ evaluated on a Müntz set of real numbers. The inversion sequence converges in the strongest possible sense. The limit is uniform if $f$ is continuous, it is in $L^{1}$ if $f\in L^{1}$, and converges in an appropriate norm or Fréchet topology for generalized functions $f$. As a corollary we obtain a new constructive inversion procedure for the convolution transform ${\mathcal K}:f\mapsto k\star f$; i.e., for given $g$ and $k$ we construct a sequence of continuous functions $f_{n}$ such that $k\star f_{n}\to g$.References
- Baeumer, B. A Vector-Valued Operational Calculus and Abstract Cauchy Problems. Dissertation, Louisiana State University, 1997. (http://math.lsu.edu/~tiger)
- Boris Bäumer, Günter Lumer, and Frank Neubrander, Convolution kernels and generalized functions, Generalized functions, operator theory, and dynamical systems (Brussels, 1997) Chapman & Hall/CRC Res. Notes Math., vol. 399, Chapman & Hall/CRC, Boca Raton, FL, 1999, pp. 68–78. MR 1678671
- Boris Bäumer and Frank Neubrander, Laplace transform methods for evolution equations, Confer. Sem. Mat. Univ. Bari 258-260 (1994), 27–60. Swabian-Apulian Meeting on Operator Semigroups and Evolution Equations (Italian) (Ruvo di Puglia, 1994). MR 1385478
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- C. Foiaş, Approximation des opérateurs de J. Mikusiński par des fonctions continues, Studia Math. 21 (1961/62), 73–74 (French). MR 139907, DOI 10.4064/sm-21-1-73-74
- Günter Lumer and Frank Neubrander, Asymptotic Laplace transforms and evolution equations, Evolution equations, Feshbach resonances, singular Hodge theory, Math. Top., vol. 16, Wiley-VCH, Berlin, 1999, pp. 37–57. MR 1691813
- R. H. J. Germay, Généralisation de l’équation de Hesse, Ann. Soc. Sci. Bruxelles Sér. I 59 (1939), 139–144 (French). MR 86
- Kr. Skórnik, On the Foiaş theorem on convolution of continuous functions, Complex analysis and applications ’85 (Varna, 1985) Publ. House Bulgar. Acad. Sci., Sofia, 1986, pp. 604–608. MR 914566
- Titchmarsh, E. C. The zeros of certain integral functions. Proceedings of the London Mathematical Society 25 (1926), 283–302.
- Vignaux, J. C. Sugli integrali di Laplace asintotici, Atti Accad. naz. Lincei, Rend. Cl. Sci. fis. mat. (6) 29 (1939), 345–400.
Bibliographic Information
- Boris Baeumer
- Affiliation: Department of Mathematics and Statistics, University of Otago, P.O. Box 56, Dunedin, New Zealand
- MR Author ID: 688464
- Email: bbaeumer@maths.otago.ac.nz
- Received by editor(s): January 25, 1999
- Received by editor(s) in revised form: August 5, 2002
- Published electronically: October 25, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 1201-1212
- MSC (2000): Primary 44A35, 44A10, 44A40
- DOI: https://doi.org/10.1090/S0002-9947-02-03174-4
- MathSciNet review: 1938753