Singular integrals with rough kernels along real-analytic submanifolds in ${\mathbf {R}}^3$
HTML articles powered by AMS MathViewer
- by Dashan Fan, Kanghui Guo and Yibiao Pan
- Trans. Amer. Math. Soc. 355 (2003), 1145-1165
- DOI: https://doi.org/10.1090/S0002-9947-02-03175-6
- Published electronically: November 5, 2002
- PDF | Request permission
Abstract:
$L^p$ mapping properties will be established in this paper for singular Radon transforms with rough kernels defined by translates of a real-analytic submanifold in $\mathbf {R}^3$.References
- Michael Christ, Hilbert transforms along curves. I. Nilpotent groups, Ann. of Math. (2) 122 (1985), no. 3, 575–596. MR 819558, DOI 10.2307/1971330
- Michael Christ, Alexander Nagel, Elias M. Stein, and Stephen Wainger, Singular and maximal Radon transforms: analysis and geometry, Ann. of Math. (2) 150 (1999), no. 2, 489–577. MR 1726701, DOI 10.2307/121088
- Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. MR 447954, DOI 10.1090/S0002-9904-1977-14325-5
- Colzani, L., Hardy spaces on spheres, Ph.D. Thesis, Washington University, St. Louis, 1982.
- William C. Connett, Singular integrals near $L^{1}$, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 163–165. MR 545253
- Javier Duoandikoetxea and José L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), no. 3, 541–561. MR 837527, DOI 10.1007/BF01388746
- Dashan Fan, Restriction theorems related to atoms, Illinois J. Math. 40 (1996), no. 1, 13–20. MR 1386309
- R. Fefferman, A note on singular integrals, Proc. Amer. Math. Soc. 74 (1979), no. 2, 266–270. MR 524298, DOI 10.1090/S0002-9939-1979-0524298-3
- Dashan Fan and Yibiao Pan, Singular integral operators with rough kernels supported by subvarieties, Amer. J. Math. 119 (1997), no. 4, 799–839. MR 1465070
- Dashan Fan, Kanghui Guo, and Yibiao Pan, Singular integrals with rough kernels along real-analytic submanifolds in $\mathbf R^n$, Integral Equations Operator Theory 33 (1999), no. 1, 8–19. MR 1664347, DOI 10.1007/BF01203079
- Robert M. Hardt, Slicing and intersection theory for chains associated with real analytic varieties, Acta Math. 129 (1972), 75–136. MR 315561, DOI 10.1007/BF02392214
- Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035, DOI 10.1007/978-3-642-96750-4
- Detlef Müller, Singular kernels supported by homogeneous submanifolds, J. Reine Angew. Math. 356 (1985), 90–118. MR 779377, DOI 10.1515/crll.1985.356.90
- Javad Namazi, A singular integral, Proc. Amer. Math. Soc. 96 (1986), no. 3, 421–424. MR 822432, DOI 10.1090/S0002-9939-1986-0822432-2
- Yibiao Pan, Boundedness of oscillatory singular integrals on Hardy spaces. II, Indiana Univ. Math. J. 41 (1992), no. 1, 279–293. MR 1160914, DOI 10.1512/iumj.1992.41.41016
- D. H. Phong and E. M. Stein, Singular integrals related to the Radon transform and boundary value problems, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 24, , Phys. Sci., 7697–7701. MR 728667, DOI 10.1073/pnas.80.24.7697
- D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. I, Acta Math. 157 (1986), no. 1-2, 99–157. MR 857680, DOI 10.1007/BF02392592
- Fulvio Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 (1987), no. 1, 179–194. MR 890662, DOI 10.1016/0022-1236(87)90064-4
- Fulvio Ricci and Elias M. Stein, Harmonic analysis on nilpotent groups and singular integrals. II. Singular kernels supported on submanifolds, J. Funct. Anal. 78 (1988), no. 1, 56–84. MR 937632, DOI 10.1016/0022-1236(88)90132-2
- Fulvio Ricci and Guido Weiss, A characterization of $H^{1}(\Sigma _{n-1})$, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 289–294. MR 545268
- E. M. Stein, Problems in harmonic analysis related to curvature and oscillatory integrals, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 196–221. MR 934224
- E. M. Stein, Oscillatory integrals in Fourier analysis, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 307–355. MR 864375
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Elias M. Stein and Stephen Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239–1295. MR 508453, DOI 10.1090/S0002-9904-1978-14554-6
Bibliographic Information
- Dashan Fan
- Affiliation: Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201
- Email: fan@csd4.csd.uwm.edu
- Kanghui Guo
- Affiliation: Department of Mathematics, Southwest Missouri State University, Springfield, Missouri 65804
- Email: kag026f@smsu.edu
- Yibiao Pan
- Affiliation: Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Email: yibiao+@pitt.edu
- Received by editor(s): March 16, 1998
- Received by editor(s) in revised form: July 14, 2002
- Published electronically: November 5, 2002
- Additional Notes: This work was done during the second author’s visit at the Department of Mathematics, University of Pittsburgh
The third author was partially supported by NSF Grant DMS-9622979 - © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 1145-1165
- MSC (2000): Primary 42B20; Secondary 42B15, 42B25
- DOI: https://doi.org/10.1090/S0002-9947-02-03175-6
- MathSciNet review: 1938750