On the capacity of sets of divergence associated with the spherical partial integral operator
HTML articles powered by AMS MathViewer
- by Emmanuel Montini
- Trans. Amer. Math. Soc. 355 (2003), 1415-1441
- DOI: https://doi.org/10.1090/S0002-9947-02-03144-6
- Published electronically: November 14, 2002
- PDF | Request permission
Abstract:
In this article, we study the pointwise convergence of the spherical partial integral operator $S_Rf(x)=\int _{B(0,R)} \hat {f} (y) e^{2\pi ix\cdot y}dy$ when it is applied to functions with a certain amount of smoothness. In particular, for $f\in \mathcal {L}_{\alpha }^p(\mathbb {R}^n)$, $\tfrac {n-1}{2} <\alpha \leq \tfrac {n}{p}$, $2\leq p<\tfrac {2n}{n-1}$, we prove that $S_Rf(x)\to G_{\alpha } *g(x)$ $C_{\alpha ,p}$-quasieverywhere on $\mathbb {R}^n$, where $g\in L^p({\mathbb {R}}^n )$ is such that $f=G_{\alpha }*g$ almost everywhere. A weaker version of this result in the range $0<\alpha \leq \tfrac {n-1}{2}$ as well as some related localisation principles are also obtained. For $1\leq p<2-\tfrac {1}{n}$ and $0\leq \alpha <\tfrac {(2-p)n-1}{2p}$, we construct a function $f\in \mathcal {L}_\alpha ^p(\mathbb {R}^n)$ such that $S_Rf(x)$ diverges everywhere.References
- David R. Adams and Lars Inge Hedberg, Function spaces and potential theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314, Springer-Verlag, Berlin, 1996. MR 1411441, DOI 10.1007/978-3-662-03282-4
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- Anthony Carbery, The boundedness of the maximal Bochner-Riesz operator on $L^{4}(\textbf {R}^{2})$, Duke Math. J. 50 (1983), no. 2, 409–416. MR 705033
- H. A. Slim, On co-recursive orthogonal polynomials and their application to potential scattering, J. Math. Anal. Appl. 136 (1988), no. 1, 1–19. MR 972579, DOI 10.1016/0022-247X(88)90111-4
- Anthony Carbery and Fernando Soria, Almost-everywhere convergence of Fourier integrals for functions in Sobolev spaces, and an $L^2$-localisation principle, Rev. Mat. Iberoamericana 4 (1988), no. 2, 319–337. MR 1028744, DOI 10.4171/RMI/76
- Anthony Carbery and Fernando Soria, Pointwise Fourier inversion and localisation in $\textbf {R}^n$, Proceedings of the conference dedicated to Professor Miguel de Guzmán (El Escorial, 1996), 1997, pp. 847–858. MR 1600203, DOI 10.1007/BF02656490
- A. Carbery and F. Soria, personal communication (MSRI (Berkeley, USA), 1997).
- Lennart Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135–157. MR 199631, DOI 10.1007/BF02392815
- Lennart Carleson, Selected problems on exceptional sets, Van Nostrand Mathematical Studies, No. 13, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0225986
- Michael Christ, On almost everywhere convergence of Bochner-Riesz means in higher dimensions, Proc. Amer. Math. Soc. 95 (1985), no. 1, 16–20. MR 796439, DOI 10.1090/S0002-9939-1985-0796439-7
- Charles Fefferman, A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44–52. MR 320624, DOI 10.1007/BF02771772
- Richard A. Hunt, On the convergence of Fourier series, Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967) Southern Illinois Univ. Press, Carbondale, Ill., 1968, pp. 235–255. MR 0238019
- V. A. Il′in, Localization and convergence problems for Fourier series in fundamental function systems of Laplace’s operator, Uspehi Mat. Nauk 23 (1968), no. 2 (140), 61–120 (Russian). MR 0223823
- Jean-Pierre Kahane and Raphaël Salem, Ensembles parfaits et séries trigonométriques, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1301, Hermann, Paris, 1963 (French). MR 0160065
- Yūichi Kanjin, Convergence and divergence almost everywhere of spherical means for radial functions, Proc. Amer. Math. Soc. 103 (1988), no. 4, 1063–1069. MR 954984, DOI 10.1090/S0002-9939-1988-0954984-8
- Carlos E. Kenig and Peter A. Tomas, Maximal operators defined by Fourier multipliers, Studia Math. 68 (1980), no. 1, 79–83. MR 583403, DOI 10.4064/sm-68-1-79-83
- Pertti Mattila, Spherical averages of Fourier transforms of measures with finite energy; dimension of intersections and distance sets, Mathematika 34 (1987), no. 2, 207–228. MR 933500, DOI 10.1112/S0025579300013462
- C. Meaney and E. Prestini, On convergence of some integral transforms, Miniconference on probability and analysis (Sydney, 1991) Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 29, Austral. Nat. Univ., Canberra, 1992, pp. 145–162. MR 1188892
- E. Montini, Questions Related with the Inversion of the Fourier Transform in Dimensions Greater than 1 for Functions in $\mathcal {L}_\alpha ^p$, Ph.D. Thesis, Univ. of Edinburgh (U.K.), 1998.
- Elena Prestini, Almost everywhere convergence of the spherical partial sums for radial functions, Monatsh. Math. 105 (1988), no. 3, 207–216. MR 939943, DOI 10.1007/BF01636929
- Garrett Birkhoff and Morgan Ward, A characterization of Boolean algebras, Ann. of Math. (2) 40 (1939), 609–610. MR 9, DOI 10.2307/1968945
- P. Erdös and T. Grünwald, On polynomials with only real roots, Ann. of Math. (2) 40 (1939), 537–548. MR 7, DOI 10.2307/1968938
- Per Sjölin, Two theorems on convergence of Fourier integrals and Fourier series, Approximation and function spaces (Warsaw, 1986) Banach Center Publ., vol. 22, PWN, Warsaw, 1989, pp. 413–426. MR 1097210
- Per Sjölin, Estimates of spherical averages of Fourier transforms and dimensions of sets, Mathematika 40 (1993), no. 2, 322–330. MR 1260895, DOI 10.1112/S0025579300007087
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- Terence Tao, The weak-type endpoint Bochner-Riesz conjecture and related topics, Indiana Univ. Math. J. 47 (1998), no. 3, 1097–1124. MR 1665753, DOI 10.1512/iumj.1998.47.1544
- Albert Eagle, Series for all the roots of the equation $(z-a)^m=k(z-b)^n$, Amer. Math. Monthly 46 (1939), 425–428. MR 6, DOI 10.2307/2303037
Bibliographic Information
- Emmanuel Montini
- Affiliation: Department of Mathematics and Statistics, University of Edinburgh, J.C.M.B., King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, United Kingdom
- Address at time of publication: NEKS Technologies Inc., 230 rue Bernard-Belleau, Bureau 221, Laval (Québec) H7V 4A9, Canada
- Email: emmanuel@montini.ca
- Received by editor(s): August 31, 2000
- Published electronically: November 14, 2002
- Additional Notes: The author was supported in part by a Commonwealth Academic Staff Fellowship (CA0355)
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 1415-1441
- MSC (2000): Primary 42B05, 31B15
- DOI: https://doi.org/10.1090/S0002-9947-02-03144-6
- MathSciNet review: 1946398