Local geometry of singular real analytic surfaces
HTML articles powered by AMS MathViewer
- by Daniel Grieser
- Trans. Amer. Math. Soc. 355 (2003), 1559-1577
- DOI: https://doi.org/10.1090/S0002-9947-02-03168-9
- Published electronically: November 18, 2002
- PDF | Request permission
Abstract:
Let $V\subset \mathbb {R}^N$ be a compact real analytic surface with isolated singularities, and assume its smooth part $V_0$ is equipped with a Riemannian metric that is induced from some analytic Riemannian metric on $\mathbb {R}^N$. We prove:
-
Each point of $V$ has a neighborhood which is quasi-isometric (naturally and “almost isometrically”) to a union of metric cones and horns, glued at their tips.
-
A full asymptotic expansion, for any $p\in V$, of the length of $V\cap \{q:\operatorname {dist}(q,p)=r\}$ as $r\to 0$.
-
A Gauss-Bonnet Theorem, saying that each singular point contributes $1-l/(2\pi )$, where $l$ is the coefficient of the linear term in the expansion of (2).
-
The $L^2$ Stokes Theorem, selfadjointness and discreteness of the Laplace-Beltrami operator on $V_0$, an estimate on the heat kernel, and a Gauss-Bonnet Theorem for the $L^2$ Euler characteristic.
As a central tool we use resolution of singularities.
References
- M. F. Atiyah, Resolution of singularities and division of distributions, Comm. Pure Appl. Math. 23 (1970), 145–150. MR 256156, DOI 10.1002/cpa.3160230202
- I. N. Bernšteĭn and S. I. Gel′fand, Meromorphy of the function $P^{\lambda }$, Funkcional. Anal. i Priložen. 3 (1969), no. 1, 84–85 (Russian). MR 0247457
- Edward Bierstone and Pierre D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207–302. MR 1440306, DOI 10.1007/s002220050141
- Edward Bierstone and Pierre D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5–42. MR 972342
- L. Birbrair, Local bi-Lipschitz classification of $2$-dimensional semialgebraic sets, Houston J. Math. 25 (1999), no. 3, 453–472. MR 1730886
- L. Bröcker, M. Kuppe, and W. Scheufler, Inner metric properties of $2$-dimensional semi-algebraic sets, Rev. Mat. Univ. Complut. Madrid 10 (1997), no. Special Issue, suppl., 51–78. Real algebraic and analytic geometry (Segovia, 1995). MR 1485291
- Jochen Brüning, Irregular spectral asymptotics, Stochastic processes, physics and geometry: new interplays, II (Leipzig, 1999) CMS Conf. Proc., vol. 29, Amer. Math. Soc., Providence, RI, 2000, pp. 85–99. MR 1803405
- Jochen Brüning, The signature theorem for manifolds with metric horns, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1996) École Polytech., Palaiseau, 1996, pp. Exp. No. II, 10. MR 1417727
- J. Brüning and M. Lesch, Hilbert complexes, J. Funct. Anal. 108 (1992), no. 1, 88–132. MR 1174159, DOI 10.1016/0022-1236(92)90147-B
- J. Brüning and M. Lesch, Kähler-Hodge theory for conformal complex cones, Geom. Funct. Anal. 3 (1993), no. 5, 439–473. MR 1233862, DOI 10.1007/BF01896238
- Jochen Brüning and Matthias Lesch, On the spectral geometry of algebraic curves, J. Reine Angew. Math. 474 (1996), 25–66. MR 1390691
- Jochen Brüning, Norbert Peyerimhoff, and Herbert Schröder, The $\overline \partial$-operator on algebraic curves, Comm. Math. Phys. 129 (1990), no. 3, 525–534. MR 1051503
- Constantine J. Callias, On the existence of small-time heat expansions for operators with irregular singularities in the coefficients, Math. Res. Lett. 2 (1995), no. 2, 129–146. MR 1324697, DOI 10.4310/MRL.1995.v2.n2.a3
- Jeff Cheeger, On the Hodge theory of Riemannian pseudomanifolds, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 91–146. MR 573430
- Jeff Cheeger, Spectral geometry of singular Riemannian spaces, J. Differential Geom. 18 (1983), no. 4, 575–657 (1984). MR 730920
- Jeff Cheeger, Mark Goresky, and Robert MacPherson, $L^{2}$-cohomology and intersection homology of singular algebraic varieties, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 303–340. MR 645745
- G. Eulering, Integrale Krümmungskonstanten algebraischer Untermannigfaltigkeiten von Räumen konstanter Krümmung, Doctoral Thesis, Münster 1995.
- Joseph H. G. Fu, Curvature measures of subanalytic sets, Amer. J. Math. 116 (1994), no. 4, 819–880. MR 1287941, DOI 10.2307/2375003
- I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations, Academic Press, New York-London, 1964. Translated by Eugene Saletan. MR 0166596
- D. Grieser and M. Lesch, On the $L^2$ Stokes theorem and Hodge theory for singular algebraic varieties, to appear in Math. Nachr.
- D. Grieser,Quasiisometry of singular metrics, to appear in Houston J. Math.
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; 79 (1964), 205–326. MR 0199184, DOI 10.2307/1970547
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. MR 0448362
- Pierre Jeanquartier, Transformation de Mellin et développements asymptotiques, Enseign. Math. (2) 25 (1979), no. 3-4, 285–308 (1980) (French). MR 570314
- Matthias Lesch and Norbert Peyerimhoff, On index formulas for manifolds with metric horns, Comm. Partial Differential Equations 23 (1998), no. 3-4, 649–684. MR 1620597, DOI 10.1080/03605309808821359
- J.-M. Lion and J.-P. Rolin, Intégration des fonctions sous-analytiques et volumes des sous-ensembles sous-analytiques, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 3, 755–767 (French, with English and French summaries). MR 1644093
- Masayoshi Nagase, Hodge theory of singular algebraic curves, Proc. Amer. Math. Soc. 108 (1990), no. 4, 1095–1101. MR 1002162, DOI 10.1090/S0002-9939-1990-1002162-8
- Jesús M. Ruiz, The basic theory of power series, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1993. MR 1234937, DOI 10.1007/978-3-322-84994-6
- M. S. Robertson, The variation of the sign of $V$ for an analytic function $U+iV$, Duke Math. J. 5 (1939), 512–519. MR 51
Bibliographic Information
- Daniel Grieser
- Affiliation: Institut für Mathematik, Humboldt Universität zu Berlin, Sitz: Rudower Chaussee 25, 10099 Berlin, Germany
- Address at time of publication: Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139
- MR Author ID: 308546
- Email: grieser@mathematik.hu-berlin.de
- Received by editor(s): July 9, 2002
- Published electronically: November 18, 2002
- Additional Notes: The author gratefully acknowledges support by the Deutsche Forschungsgemeinschaft (Gerhard-Hess-Programm) and the Erwin Schrödinger Institute
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 1559-1577
- MSC (2000): Primary 14P15; Secondary 32B20, 53B20, 58J99
- DOI: https://doi.org/10.1090/S0002-9947-02-03168-9
- MathSciNet review: 1946405