## Some two-step and three-step nilpotent Lie groups with small automorphism groups

HTML articles powered by AMS MathViewer

- by S. G. Dani PDF
- Trans. Amer. Math. Soc.
**355**(2003), 1491-1503 Request permission

## Abstract:

We construct examples of two-step and three-step nilpotent Lie groups whose automorphism groups are “small” in the sense of either not having a dense orbit for the action on the Lie group, or being nilpotent (the latter being stronger). From the results we also get new examples of compact manifolds covered by two-step simply connected nilpotent Lie groups which do not admit Anosov automorphisms.## References

- Louis Auslander and John Scheuneman,
*On certain automorphisms of nilpotent Lie groups*, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 9–15. MR**0270395** - Andrzej Białynicki-Birula and Maxwell Rosenlicht,
*Injective morphisms of real algebraic varieties*, Proc. Amer. Math. Soc.**13**(1962), 200–203. MR**140516**, DOI 10.1090/S0002-9939-1962-0140516-5 - S. G. Dani,
*Nilmanifolds with Anosov automorphism*, J. London Math. Soc. (2)**18**(1978), no. 3, 553–559. MR**518242**, DOI 10.1112/jlms/s2-18.3.553 - S. G. Dani,
*On automorphism groups acting ergodically on connected locally compact groups*, Sankhyā Ser. A**62**(2000), no. 3, 360–366. Ergodic theory and harmonic analysis (Mumbai, 1999). MR**1803463** - S. G. Dani,
*On ergodic $\Bbb Z^d$-actions on Lie groups by automorphisms*, Israel J. Math.**126**(2001), 327–344. MR**1882043**, DOI 10.1007/BF02784160 - S. G. Dani and M. McCrudden,
*A criterion for exponentiality in certain Lie groups*, J. Algebra**238**(2001), no. 1, 82–98. MR**1822184**, DOI 10.1006/jabr.2000.8642 - Karel Dekimpe,
*Hyperbolic automorphisms and Anosov diffeomorphisms on nilmanifolds*, Trans. Amer. Math. Soc.**353**(2001), no. 7, 2859–2877. MR**1828476**, DOI 10.1090/S0002-9947-01-02683-6 - Karel Dekimpe and Wim Malfait,
*A special class of nilmanifolds admitting an Anosov diffeomorphism*, Proc. Amer. Math. Soc.**128**(2000), no. 7, 2171–2179. MR**1664349**, DOI 10.1090/S0002-9939-99-05337-X - Cahit Arf,
*Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper*, J. Reine Angew. Math.**181**(1939), 1–44 (German). MR**18**, DOI 10.1515/crll.1940.181.1 - Joan L. Dyer,
*A nilpotent Lie algebra with nilpotent automorphism group*, Bull. Amer. Math. Soc.**76**(1970), 52–56. MR**249544**, DOI 10.1090/S0002-9904-1970-12364-3 - Gerhard P. Hochschild,
*Basic theory of algebraic groups and Lie algebras*, Graduate Texts in Mathematics, vol. 75, Springer-Verlag, New York-Berlin, 1981. MR**620024** - Wim Malfait,
*Anosov diffeomorphisms on nilmanifolds of dimension at most six*, Geom. Dedicata**79**(2000), no. 3, 291–298. MR**1755730**, DOI 10.1023/A:1005264730096 - M. S. Raghunathan,
*Discrete subgroups of Lie groups*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR**0507234** - Jean-Pierre Serre,
*Complex semisimple Lie algebras*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001. Translated from the French by G. A. Jones; Reprint of the 1987 edition. MR**1808366**, DOI 10.1007/978-3-642-56884-8 - V. S. Varadarajan,
*Lie groups, Lie algebras, and their representations*, Graduate Texts in Mathematics, vol. 102, Springer-Verlag, New York, 1984. Reprint of the 1974 edition. MR**746308**, DOI 10.1007/978-1-4612-1126-6 - Peter Walters,
*An introduction to ergodic theory*, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR**648108**

## Additional Information

**S. G. Dani**- Affiliation: Erwin Schrödinger Institute, Boltzmanngasse 9, A-1090 Vienna, Austria
- Address at time of publication: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
- MR Author ID: 54445
- Email: dani@math.tifr.res.in
- Received by editor(s): April 29, 2002
- Received by editor(s) in revised form: July 12, 2002
- Published electronically: December 4, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**355**(2003), 1491-1503 - MSC (2000): Primary 22D45, 22E25; Secondary 22D40, 37D20
- DOI: https://doi.org/10.1090/S0002-9947-02-03178-1
- MathSciNet review: 1946401