On extendability of group actions on compact Riemann surfaces
HTML articles powered by AMS MathViewer
- by Emilio Bujalance, F. J. Cirre and Marston Conder PDF
- Trans. Amer. Math. Soc. 355 (2003), 1537-1557 Request permission
Abstract:
The question of whether a given group $G$ which acts faithfully on a compact Riemann surface $X$ of genus $g\ge 2$ is the full group of automorphisms of $X$ (or some other such surface of the same genus) is considered. Conditions are derived for the extendability of the action of the group $G$ in terms of a concrete partial presentation for $G$ associated with the relevant branching data, using Singerman’s list of signatures of Fuchsian groups that are not finitely maximal. By way of illustration, the results are applied to the special case where $G$ is a non-cyclic abelian group.References
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- W. Bosma, J. Cannon and C. Playoust, The Magma Algebra System I: The User Language, J. Symbolic Comput. 24 (1997), 235–265.
- Emilio Bujalance and Marston Conder, On cyclic groups of automorphisms of Riemann surfaces, J. London Math. Soc. (2) 59 (1999), no. 2, 573–584. MR 1709666, DOI 10.1112/S0024610799007115
- E. Bujalance, J. M. Gamboa, and G. Gromadzki, The full automorphism groups of hyperelliptic Riemann surfaces, Manuscripta Math. 79 (1993), no. 3-4, 267–282. MR 1223022, DOI 10.1007/BF02568345
- F. J. Cirre, Automorphism groups of real algebraic curves which are double covers of the real projective plane, Manuscripta Math. 101 (2000), no. 4, 495–512. MR 1759256, DOI 10.1007/s002290050228
- Leon Greenberg, Maximal Fuchsian groups, Bull. Amer. Math. Soc. 69 (1963), 569–573. MR 148620, DOI 10.1090/S0002-9904-1963-11001-0
- Leon Greenberg, Maximal groups and signatures, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) Ann. of Math. Studies, No. 79, Princeton Univ. Press, Princeton, N.J., 1974, pp. 207–226. MR 0379835
- W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. Oxford Ser. (2) 17 (1966), 86–97. MR 201629, DOI 10.1093/qmath/17.1.86
- C. Maclachlan, Abelian groups of automorphisms of compact Riemann surfaces, Proc. London Math. Soc. (3) 15 (1965), 699–712. MR 179348, DOI 10.1112/plms/s3-15.1.699
- David Singerman, Finitely maximal Fuchsian groups, J. London Math. Soc. (2) 6 (1972), 29–38. MR 322165, DOI 10.1112/jlms/s2-6.1.29
- David Singerman and Paul Watson, Non-maximal cyclic group actions on compact Riemann surfaces, Rev. Mat. Univ. Complut. Madrid 10 (1997), no. 2, 423–439. MR 1605674
- Peter Turbek, An explicit family of curves with trivial automorphism groups, Proc. Amer. Math. Soc. 122 (1994), no. 3, 657–664. MR 1242107, DOI 10.1090/S0002-9939-1994-1242107-2
- Peter Turbek, Sufficient conditions for a group of automorphisms of a Riemann surface to be its full automorphism group, J. Pure Appl. Algebra 123 (1998), no. 1-3, 285–300. MR 1492904, DOI 10.1016/S0022-4049(96)00094-1
- A. Wiman, Über die hyperelliptischen Kurven und diejenigen vom Geschlecht $p=3,$ welche eindeutige Transformationen in sich zulassen, Bihang Till. Kungl. Svenska Vetenskaps-Akademiens Handlingar 21, no. 1, (1895), 23 pp.
Additional Information
- Emilio Bujalance
- Affiliation: Departamento de Matemáticas Fundamentales, Facultad de Ciencias, UNED, c/ Senda del Rey s/n, 28040 Madrid, Spain
- MR Author ID: 43085
- Email: eb@mat.uned.es
- F. J. Cirre
- Affiliation: Departamento de Matemáticas Fundamentales, Facultad de Ciencias, UNED, c/ Senda del Rey s/n, 28040 Madrid, Spain
- MR Author ID: 601436
- Email: jcirre@mat.uned.es
- Marston Conder
- Affiliation: Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand
- MR Author ID: 50940
- ORCID: 0000-0002-0256-6978
- Email: conder@math.auckland.ac.nz
- Received by editor(s): December 10, 2001
- Published electronically: December 4, 2002
- Additional Notes: The first author was partially supported by DGICYT PB98-0017
The second author was partially supported by DGICYT PB98-0756
The third author was partially supported by N.Z. Marsden Fund UOA-810 - © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 1537-1557
- MSC (2000): Primary 20H10; Secondary 14H55, 20F38, 30F10
- DOI: https://doi.org/10.1090/S0002-9947-02-03184-7
- MathSciNet review: 1946404