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MONOMIAL BASES FOR q-SCHUR ALGEBRAS

JIE DU AND BRIAN PARSHALL

Abstract. Using the Beilinson-Lusztig-MacPherson construction of the quan-
tized enveloping algebra of gln and its associated monomial basis, we inves-
tigate q-Schur algebras Sq(n, r) as “little quantum groups”. We give a pre-
sentation for Sq(n, r) and obtain a new basis for the integral q-Schur algebra
Sq(n, r), which consists of certain monomials in the original generators. Fi-
nally, when n > r, we interpret the Hecke algebra part of the monomial basis
for Sq(n, r) in terms of Kazhdan-Lusztig basis elements.

1. Introduction

Let U = U(g) be the quantized enveloping algebra over Q(v) associated to a
finite-dimensional complex semisimple Lie algebra g, and let U be its Lusztig Z-
form, where Z = Z[v, v−1]. When g has a simply laced root system, monomial bases
for the positive (resp., negative) part U+ (resp., U−) of U have been constructed in
[19, 7.8] using the theory of Ringel-Hall algebras; see [3] for an approach that works
for all finite types. For example, the monomial basis for U+ consists of certain
explicit (ordered) monomials in the standard generators for U+. The algebra U
also has a PBW-type basis, but monomial bases are simpler than PBW bases and,
in addition, they are closely related to canonical (or crystal) bases.

Let Sq(n, r) be a q-Schur algebra over Q(v); see below for the definition of
Sq(n, r) and the associated Hecke algebra H = H(Sr). The q-Schur algebras were
introduced by Dipper and James [5], [6] (see [16] for an earlier version in the context
of quantum groups). These algebras, as well as their analogues over other fields,
play an important role in the non-defining representation and cohomology theories
of the finite general linear groups. It is natural to ask how to construct monomial
bases for the Sq(n, r). Using a beautiful geometric setting for q-Schur algebras,
Beilinson, Lusztig, and MacPherson [1] studied the quantized enveloping algebra
U = U(gln) of the reductive Lie algebra gln as a “limit” of q-Schur algebras and
described a monomial basis for U in terms of another basis whose elements are
formal infinite sums indexed by certain n× n matrices over Z. In particular, there
is a natural surjection U � Sq(n, r), arising as a “truncation” map; it carries
an infinite sum in U to a finite sum in Sq(n, r). In addition, the results of [1]
have an integral version (i.e., over Z) [9], and there is a corresponding surjection
U � Sq(n, r). Eventually, this work leads to a quantum Weyl reciprocity [11], also
valid at the integral level.
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1594 JIE DU AND BRIAN PARSHALL

This paper applies the approach of [1] to obtain a natural monomial basis for
Sq(n, r). Thus, Theorems 5.4 and 6.4 present monomial bases for Sq(n, r) and its
integral version Sq(n, r), while Theorem 5.5 describes the monomial basis elements
in terms of certain elements constructed in [1]. As we show elsewhere in the paper,
these bases are very natural and enjoy nice properties not shared by the PBW basis;
see, e.g., 4.9, 7.2, 9.4. For example, if n > r, then H ⊂ Sq(n, r), and Theorem 9.4
shows how the monomial basis “restricts” to a monomial basis for H (given as
monomials in the Kazhdan-Lusztig elements C′s ∈ H [15]).

This work was initially motivated by [7] (as well as by an announcement of the
results in [8] by Doty at the 2001 New Orleans AMS meeting). Their work gives
an explicit presentation of Sq(n, r) as well as a PBW-type basis Sq(n, r). We were
motivated to see how to cast these results in the more geometric setting of [1]. Both
a presentation (in a slightly different form) and a PBW basis also can be obtained
as a new application of [1]; see Theorems 5.4 and 6.6.

The table below displays three different bases for Sq(n, r), indicating how they
stand in relation to bases for both the integral quantum enveloping algebra UZ(gln)
and the integral Hecke algebra H(Sr) with r 6 n.

H(Sr) Sq(n, r) UZ(gln)

T̃w [A] PBW basis

C′w {A} Canonical basis (for U+
Z (gln))

C′s1 · · ·C′sk m(A) Monomial basis

The “orbital” basis elements [A] are indexed by n × n matrices over N whose
entries sum to r. This basis is the normalized version of the usual standard basis
for a centralizer algebra, whose elements are denoted by φdλµ in [6, 1.4]. Hence, its
Hecke algebra counterpart consists of the normalized basis elements T̃w = v−`(w)Tw.
In UZ(gln), this basis corresponds to a PBW basis by means of its connection with
a canonical (or crystal) basis; see [14] for further connections. All three algebras
have canonical bases indicated in the second row in the table. They arise naturally
from the corresponding monomial bases.

This work provides a foundation for [12], which directly relates the geometric
approach [1] to the theory of Ringel-Hall algebras for linear quivers. In particular,
this leads to a new connection between the theories of Ringel-Hall algebras and
q-Schur algebras.

Some notation. Throughout, Z = Z[v, v−1] is the ring of Laurent polynomials
in a variable v. Write q = v2 and let − : Z → Z be the ring automorphism
satisfying vi 7→ v−i for all i. For m ∈ N, put

[m]! = [1][2] · · · [m], where [i] =
vi − v−i
v − v−1

.

We also let, for c ∈ Z, t ∈ N,[
c
t

]
=

t∏
s=1

vc−s+1 − v−c+s−1

vs − v−s .
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If |c| < t, then [ct] = 0, and [ct] = [c]!

[t]![c−t]! for c > t > 0.
Let H = H(Sr) be the Hecke algebra over Z for the symmetric group Sr. If

S = {(1, 2), (2, 3), · · · , (r − 1, r)}, then H has Z-basis Tw, w ∈ Sr, and relations{
TsTw = Tsw, l(sw) = 1 + l(w), s ∈ S,w ∈W ;
(Ts + 1)(Ts − q) = 0, s ∈ S.

(1.0.1)

If V is a free Z-module of rank n, there is a natural right action of H on V ⊗r by
“place” permutations. The q-Schur algebra Sq(n, r) over Z is the centralizer ring

Sq(n, r) = EndH(V ⊗r).(1.0.2)

The algebra Sq(n, r) is Z-free of rank
(
n2+r−1

r

)
. For more details, see [5], [11]. Put

H = Q(v)⊗H and Sq(n, r) = Q(v)⊗ Sq(n, r).

2. The quantized enveloping algebra of gln

The definition below for the quantized enveloping algebra of gln is a slightly
modified version of Jimbo [16]; see [23, 3.2], [9, 1.1].

Definition 2.1. The quantized enveloping algebra of gln is the algebra U over
Q(v) generated by the elements

Ei, Fi (1 6 i 6 n− 1), Ki,K
−1
i (1 6 i 6 n)

subject to the following relations:
(a) KiKj = KjKi, KiK

−1
i = 1;

(b) KiEj = vε(i,j)EjKi, where ε(i, i) = 1, ε(i + 1, i) = −1 and ε(i, j) = 0,
otherwise;

(c) KiFj = v−ε(i,j)FjKi with ε(i, j) as in (b) above;
(d) EiEj = EjEi, FiFj = FjFi when |i− j| > 1;

(e) EiFj − FjEi = δi,j
K̃i−K̃−1

i

v−v−1 , where K̃i = KiK
−1
i+1;

(f) E2
i Ej − (v + v−1)EiEjEi + EjE

2
i = 0 when |i− j| = 1;

(g) F 2
i Fj − (v + v−1)FiFjFi + FjF

2
i = 0 when |i− j| = 1.

Relations 2.1(f),(g) are called the quantum Serre relations. The subalgebra gen-
erated by the Ei, Fi and K̃i (1 6 i 6 n − 1) is the quantized enveloping algebra
Uv(sln).

There is a unique Q-algebra anti-isomorphism Ω : U→ U defined by

Ω(Ei) = Fi, Ω(Fi) = Ei, Ω(Kj) = K−1
j and Ω(v) = v−1.

(2.1.1)

Clearly, Ω extends the anti-isomorphism Ω defined in [18, 1.2(a)] for Uv(sln).
Let U+ (resp., U−, U0) be the subalgebra of U generated by the Ei (resp., Fi,

Ki). There is a triangular decomposition U+⊗U0⊗U− mult−→
∼

U+U0U− = U which
is an isomorphism of vector spaces—see below for references in the integral case.
Clearly, the elements Kj := Kj1

1 · · ·Kjn
n for all j = (j1, · · · , jn) ∈ Zn form a basis

for U0. The subalgebras U+ and U− are both N-graded in terms of the degrees of
monomials in the Ei and Fi. For monomials M in the Ei and M ′ in the Fi, and an
element h ∈ U0, write deg(MhM ′) = deg(M) + deg(M ′). Observe that deg does
not define an algebra grading on U: the appropriate algebra grading (which we do
not use) would be given by deg′(MhM ′) = deg(M)− deg(M ′).
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1596 JIE DU AND BRIAN PARSHALL

For an analogue of a Kostant Z-form over Z, define, for m, t ∈ N and c ∈ Z,

E
(m)
i =

Emi
[m]!

, F
(m)
i =

Fmi
[m]!

and
[
Ki; c
t

]
=

t∏
s=1

Kiv
c−s+1 −K−1

i v−c+s−1

vs − v−s .

Following [23], let U (resp., U+, U−) be the Z-subalgebra of U generated by all

E
(m)
i , F (m)

i , Ki and
[
Ki; 0
t

]
(resp., E(m)

i , F (m)
i ). Let U0 be the Z-subalgebra of U

generated by all Ki and
[
Ki; 0
t

]
. Then U,U+, U0, U− are Z-forms for U,U+,U0,

U−, respectively, and there is a triangular decomposition U+⊗U0⊗U− ∼= U+U0U−

= U as free Z-modules (apply the anti-automorphism Ω to the triangular decompo-
sition given in [23, (3.2.6)]).1 The following is known from [18, 2.14] and [9, Lemma
2.1].

Lemma 2.2. The algebra U0 has a Z-basis

Kδ1
1 · · ·Kδn

n

[
K1; 0
t1

]
· · ·
[
Kn; 0
tn

]
, δi ∈ {0, 1}, ti ∈ N.

The formulas below will be useful; see [18, p.269], [17, 4.1(a)].

Lemma 2.3. The following formulas hold in U:

(1)
[
Ki;0
t

]
[Ki;−ts ] = [t+st ]

[
Ki;0
t+s

]
(t, s > 0);

(2)
[
Ki;c
t

]
− v−t

[
Ki;c+1

t

]
= −v−(c+1)K−1

i

[
Ki;c
t−1

]
(t > 1);

(3)
[
Ki;−c
t

]
=
∑

06j6t(−1)jvc(t−j)
[
c+j−1
j

]
Kj
i

[
Ki;0
t−j

]
(t > 0, c > 1);

(4)
[
Ki;c
t

]
=
∑

06j6t v
c(t−j) [cj]K

−j
i

[
Ki;0
t−j

]
(t > 0, c > 0);

(5) E(m)
i

[
Ki;c
t

]
=
[
Ki;c−m

t

]
E

(m)
i and E(m)

i

[
Ki+1;c

t

]
=
[
Ki+1;c+m

t

]
E

(m)
i ;

(6) F (m)
i

[
Ki;c
t

]
=
[
Ki;c+m

t

]
F

(m)
i and F (m)

i

[
Ki+1;c

t

]
=
[
Ki+1;c−m

t

]
F

(m)
i ;

(7) For any positive integers k, l, we have

E
(k)
i F

(l)
i =

min(k,l)∑
t=0

F
(l−t)
i

[
K̃i; 2t− k − l

t

]
E

(k−t)
i .

Proof. The formulas (1)-(4) and (7) are proved exactly as in [17]. Finally, (5) and
(6) follow from 2.1(b),(c) by induction on m. �

The commutator formula 2.3(7) plus 2.3(5),(6) show that, for monomials M in
the Ei and M ′ in the Fi, MM ′ = M ′M +

∑
jMjhjM

′
j , where Mj (resp.,M ′j) are

monomials in the Ei’s (resp., Fi’s), hj ∈ U0 and

deg(MjhjM
′
j) 6 deg(MM ′)− 2.

1Note that the Lusztig Z-form ′U of Uv(sln) is generated by all E
(m)
i , F

(m)
i , K̃i, and K̃−1

i .

Thus, by [9, 2.6], the Z-form U can be generated by all E
(m)
i , F

(m)
i , K̃i, K̃

−1
i , K1 and

�
K1; 0
t

�
.
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3. The Beilinson-Lusztig-MacPherson construction

and monomial bases

Let Ξ̃ be the set of all n × n matrices over Z with all off-diagonal entries in N,
and let Ξ = Mn(N) be the subset of Ξ̃ consisting of matrices with entries all in N.
Let σ : Ξ → N be the map sending a matrix to the sum of its entries. Then, for
r ∈ N, the inverse image Ξr := σ−1(r) is the set of n×n matrices in Ξ whose entries
sum to r. For 1 6 i, j 6 n, let Ei,j ∈ Ξ be the matrix (ak,l) with ak,l = δi,kδj,l.

Let Ur be the algebra over Z introduced in [1, 1.2].2 It has a normalized Z-basis
{[A]}A∈Ξr defined in [1, 1.4]. In particular, if λ ∈ Nn with D = diag(λ) ∈ Ξr, then
(cf. [1, 1.3])

[D][A]=

{
[A], if λ = ro(A)
0, otherwise;

and [A][D]=

{
[A], if λ = co(A)
0, otherwise,

(3.0.1)

where ro(A) =
(∑

j a1,j , · · · ,
∑
j an,j

)
and co(A) = (

∑
i ai,1, · · · ,

∑
i ai,n) are the

sequences of row and column sums of A = (ai,j). We put Ur = Q(v)⊗Z Ur.
In [9, 1.4], the algebra Ur is shown to be naturally isomorphic to the q-Schur

algebra Sq(n, r) as defined in (1.0.2). In the sequel, we often call Ur and Ur q-Schur
algebras.3

Let K be the Z-algebra (without 1), defined in [1, §4], with basis {[A]}A∈eΞ, and
let U̇ = Q(v)⊗ZK.4 The multiplication · in K (and hence in U̇) is defined in [1, 4.4]
by specializing v′ to 1 from another algebra over Q(v)[v′, v′−1] whose multiplication
is induced from the stabilization property of the multiplication of q-Schur algebras.
By the definition in [1, 4.5], the relations (3.0.1), D ∈ Ξ̃, continue to hold in U̇.

As in [1, 5.1], U̇∞ is the vector space of all formal (possibly infinite) Q(v)-linear
combinations

∑
A∈eΞ βA[A] satisfying: for diagonal D,D′ ∈ Ξ̃, the sums∑

A∈eΞ
βA[D] · [A] and

∑
A∈eΞ

βA[A] · [D′]

are finite. Defining the product of
∑
A∈eΞ βA[A],

∑
B∈eΞ γB[B] ∈ U̇∞ to be∑

A,B

βAγB[A] · [B]

gives U̇∞ an associative algebra structure, with 1 =
∑

[D], the sum over all diagonal
D ∈ Ξ̃. Also, U̇ is naturally a subalgebra (without 1) of U̇∞.

2The algebra Ur is denoted Kr in [1].
3The algebra Ur can be roughly described as follows: Let G = GLr(pd) for some prime power

pd. Let Sq(n, r) = C⊗ Sq(n, r) via the base change Z → C, v 7→ pd/2. It is well known (see, e.g.,
[5, (2.24]) that

Sq(n, r) ∼= EndG(
M

indGPλC);(3.0.2)

here λ runs over all compositions λ of r into n parts, and Pλ denotes the corresponding para-
bolic subgroup of G. Using the geometry of relative positions of pairs of n-step filtrations on
r-dimensional space, [1] defines Ur directly as a kind of “deformation” of (3.0.2).

4The notation here has been abused as in [1]: the basis {[A]}A∈Ξr for a q-Schur algebra is not

a subset of the basis {[A]}
A∈eΞ for U̇. Given A ∈ Ξ, it should always be clear from the context

whether [A] is to be regarded as a basis element of U or of Ur .
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1598 JIE DU AND BRIAN PARSHALL

Let Ξ± be the set of all A ∈ Ξ whose diagonal entries are zero. Given r ∈ N,
r > 0, A ∈ Ξ± and j = (j1, · · · , jn) ∈ Zn, we define

A(j, r) =
∑
D∈Ξ0

σ(A+D)=r

v
P
i diji [A+D] ∈ Ur,

A(j) =A(j,∞) =
∑
D∈eΞ0

v
P
i diji [A+D] ∈ U̇∞,

where Ξ0 (resp., Ξ̃0) denotes the subset of diagonal matrices in Ξ (resp., Ξ̃) and
D = diag(d1, · · · , dn). If σ(A) > r, then A(j, r) = 0. For any diagonal matrix
D ∈ Ξr, we have from (3.0.1)

A(0, r)[D] =

{
[A+D′], if co(D′) = ro(D) − co(A) ∈ Nn;
0, if such a D′ ∈ Nn does not exist.

(3.0.3)

Of course, 0 := (0, · · · , 0) ∈ Nn. Obviously, the D′ in (3.0.3) satisfying co(D′) =
ro(D) − co(A) is unique, if it exists.

Let V be the subspace of U̇∞ spanned by

B = {A(j) | A ∈ Ξ±, j ∈ Zn}.
The next result is proved in [1, 5.5, 5.7].

Proposition 3.1. (1) V is a subalgebra of U̇∞ with Q(v)-basis B. It is generated
by Eh,h+1(0), Eh+1,h(0) and 0(j) for all 1 6 h < n and j ∈ Zn.

(2) For any positive integer r, the q-Schur algebra Ur is generated by the elements

Eh,h+1(0, r), Eh+1,h(0, r), and 0(j, r)

for all 1 6 h < n and j ∈ Nn.
(3) There is an algebra isomorphism U ∼→ V satisfying

Eh 7→ Eh,h+1(0), Kj 7→ 0(j), Fh 7→ Eh+1,h(0)

and an algebra epimorphism ζr : U� Ur satisfying

Eh 7→ Eh,h+1(0, r), Kj 7→ 0(j, r), Fh 7→ Eh+1,h(0, r).

We shall identify U with V and hence identify Eh with Eh,h+1(0), etc., in the
sequel. We now describe a monomial basis for U.

Let Ξ+ (resp., Ξ−) be the subset of Ξ consisting of those matrices (ai,j) with
ai,j = 0 for all i > j (resp., i 6 j). For A ∈ Ξ, write A = A+ + A0 + A− with
A+ ∈ Ξ+, A0 ∈ Ξ0, and A− ∈ Ξ−. We also introduce the degree function:5

deg(A) =
∑

16i,j6n
|j − i|ai,j.(3.1.1)

Let A = (aij) ∈ Ξ. For i < j, let σi,j(A) =
∑

s6i;t>j as,t and σj,i(A) =∑
s6i;t>j at,s. Define, following [1, 3.5], A′ 4 A if and only if σi,j(A′) 6 σi,j(A)

and σj,i(A′) 6 σj,i(A) for all 1 6 i < j 6 n. Put A′ ≺ A if A′ 4 A and, for
some pair (i, j) with i < j, either σi,j(A′) < σi,j(A) or σj,i(A′) < σj,i(A). Since
degA+ =

∑n−1
i=1 σi,i+1(A), and degA− =

∑n−1
i=1 σi+1,i(A), the lemma below holds.

5The degree function here differs from the Ψ function [1, p.668]. But, it plays a similar role
for induction; see 4.14.
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Lemma 3.2. If A′ 4 A, then deg(A′) 6 deg(A).

Note that A′ ≺ A does not necessarily imply that deg(A′) < deg(A).
For A ∈ Ξ± and j ∈ Zn, let

M (A,j) = E(A+) · 0(j) · F (A−),

where
E(A+) =

∏
16i6h<j6n

E
(ai,j)
h and F (A−) =

∏
16j6h<i6n

F
(ai,j)
h .

The orders in which the products E(A+) and F (A−) are taken are defined as follows:
For the jth column (reading upwards) aj−1,j , · · · , a1,j (2 6 j 6 n) of A+, fix the
following reduced expression for the longest word w0,j of Sj :

w0,j = sj−1(sj−2sj−1)(sj−3sj−2sj−1) · · · (s1s2 · · · sj−1)

= (sj−1 · · · s1)(sj−1 · · · s2) · · · (sj−1sj−2)sj−1.
(3.2.1)

Here (and later), si = (i, i+ 1) for 1 6 i < j. Put6

Mj = Mj(A+) = E
(aj−1,j)
j−1 (E(aj−2,j)

j−2 E
(aj−2,j )
j−1 ) · · · (E(a1,j)

1 E
(a1,j)
2 · · ·E(a1,j)

j−1 ).

Similarly, for the jth row (reading to the right) aj,1, · · · , aj,j−1 (2 6 j 6 n) of A−,
put

M ′j = (F (aj,1)
j−1 · · ·F (aj,1)

2 F
(aj,1)
1 ) · · · (F (aj,j−2)

j−1 F
(aj,j−2)
j−2 )F (aj,j−1)

j−1 = Ω(Mj(A′))

(cf. (2.1.1)), where A′ = (A−)T is the transpose of A−. Then we have E(A+) =
MnMn−1 · · ·M2 and F (A−) = M ′2M

′
3 · · ·M ′n. Clearly, degE(A+) = deg(A+) and

degF (A−) = deg(A−). The following result is also essentially proved in [1].

Proposition 3.3. The set

M = {M (A,j) | A ∈ Ξ±, j ∈ Zn}

forms a basis for U. For A ∈ Ξ±, j ∈ Zn, there exist a ∈ Z, fj′,B, gj′′,C ∈ Q(v)
such that

M (A,j) = vaA(j) +
∑

j′∈Zn,B∈Ξ±

B≺A

fj′,BB(j′),(3.3.1)

A(j) = v−aM (A,j) +
∑

j′′∈Zn,C∈Ξ±

C≺A

gj′′,CM
(C,j′′).(3.3.2)

In particular, the set {E(A)}A∈Ξ+ (resp., {F (B)}B∈Ξ−) forms a basis for U+ (resp.,
U−).

6Observe that changing from the first reduced expression in (3.2.1) to the second requires only
relations of the form sisj = sjsi, |i− j| > 1. Thus, by definition 2.1, we have

Mj = (E
(aj−1,j )

j−1 · · ·E(a1,j)
1 )(E

(aj−2,j )

j−2 · · ·E(a1,j)
2 ) · · · (E(a2,j)

j−1 E
(a1,j)

j−2 )E
(a1,j)

j−1 .

This is the original definition given in [1].
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Proof. For the first assertion, see [1, 5.7]. Next, [1, 5.4(c)]7 (and the discussion
following it) implies (3.3.1), while (3.3.2) is obtained by solving (3.3.1) inductively.
The final assertion follows from an argument along the line of that of [1, 5.5] (see
[12, 4.3] for some details). �

The basisM is the monomial basis associated to the given ordering on the w0,j

above.

Corollary 3.4. Let A ∈ Ξ+ and let M be any monomial in the Ei. Then the prod-
uct ME(A) is a (finite) Z-linear combination of E(B) with B ∈ Ξ+ and deg(B) 6
deg(M) + deg(A). Thus, M itself can be written as a linear combination of E(B)

with B ∈ Ξ+ and deg(B) 6 deg(M). A similar statement holds for the Fi.

Proof. Using [1, 5.4(c)] again, we have

E(A) = M (A,0) = A(0) +
∑

j∈Zn,B′∈Ξ±

B′≺A

fj,B′B
′(j).(3.4.1)

The first formula given in [1, 5.3] implies that, if A′ ∈ Ξ+, then EhA′(0) is a linear
combination of terms B(0) with B ∈ Ξ+. (The fact that A′ ∈ Ξ+ is essential to
guarantee that the summands in [1, 5.3] of the form B(j) with j 6= 0 all have zero
coefficient.) Since E(A) is a product (up to a scalar) of various Eh = Eh,h+1(0),
induction shows that the only B′(j) that occur in (3.4.1) are those with B′ ∈ Ξ+

and j = 0. Therefore, we obtain

E(A) = A(0) +
∑

B′∈Ξ+:B′≺A
f0,B′B

′(0).(3.4.2)

Clearly, if f0,B′ 6= 0, then B′ ≺ A implies deg(B′) 6 deg(A), by 3.2, and B′ ∈ Ξ+

as well.
To prove the corollary, we can easily reduce to the special case when M = Eh for

1 6 h 6 n−1. Applying [1, 5.3, p. 672] again shows that the product EhA(0) (resp.,
EhB

′(0)) is a linear combination of B′′(0) with B′′ ∈ Ξ+, deg(B′′) 6 deg(A) + 1
(resp., deg(B′′) 6 deg(B′) + 1 6 deg(A) + 1). Every B′′(0) is a linear combination
of E(B) with B ∈ Ξ+, B 4 B′′ by (3.4.2). So EhE

(A) is a linear combination of
E(B) with B ∈ Ξ+ and deg(B) 6 deg(B′′) 6 deg(A) + 1. �

Remark 3.5. We note that the inequalities deg(B) 6 deg(A) + deg(M) in the
statement of 3.4 can even be replaced by the equalities deg(B) = deg(A)+deg(M),
using the fact that the relations defining U+ are homogeneous and the monomial
basis given in the last assertion of 3.3 preserves the graded structure on U+. We
thank Fu Qiang for pointing this out.

4. The algebra Sr

Let X be another indeterminate which is independent of v. For t ∈ N, put

[X ; t]! = (X − 1)(X − v) · · · (X − vt−1),

with [X ; 0]! = 1 by definition.

7We will make much use of this result, which holds for both U and for Ur , in the sequel.
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Definition 4.1. Let Sr be the associative algebra over Q(v) generated by the
elements

ei, fi, ki (1 6 i 6 n− 1),
subject to the relations:

(a) kikj = kjki;
(b) [k1; t1]![k2; t2]! · · · [kn−1; tn−1]! = 0 ∀ti ∈ N such that t1 + · · ·+ tn−1 = r+1;
(c) eiej = ejei, fifj = fjfi (|i− j| > 1);
(d) e2

i ej − (v + v−1)eiejei + eje2
i = 0 (|i− j| = 1);

(e) f2
i fj − (v + v−1)fifjfi + fjf2

i = 0 (|i− j| = 1);
(f) kiej = vε(i,j)ejki, kifj = v−ε(i,j)fjki with ε(i, j) as in 2.1(b);

(g) eifj − fjei = δi,j
k̃i−k̃−1

i

v−v−1 , where k̃i = kik
−1
i+1, 1 6 i 6 n − 1, with kn =

vrk−1
1 · · · k−1

n−1.

Since [ki; ti]! = 0 if ti = r+ 1, each ki is invertible and k−1
i is a polynomial of ki

of degree r; so the definitions of k̃i and kn make sense. Also, 4.1(f) holds for i = n.
By 2.1, there is a surjective homomorphism U � Sr in which Ei 7→ ei, Fi 7→ fi
and Kj 7→ kj . In particular, for A ∈ Ξ+, let e(A) be the image of E(A) under this
homomorphism, with a similar convention for f(A), A ∈ Ξ−. The relations in 2.3
hold with Ei, Fi,Ki replaced by ei, fi, ki, respectively. The definition implies the
following result.

Lemma 4.2. (1) There is a unique Q(v)-algebra anti-automorphism8 τ on Sr
satisfying

τ(ei) = fi, τ(fi) = ei, τ(ki) = ki.

(2) There is a unique Q(v)-algebra anti-automorphism γ on Sr satisfying

γ(ei) = en−i, γ(fi) = fn−i, γ(ki) = kn−i+1.

(3) There is a unique Q-algebra involution ¯ on Sr satisfying

ēi = ei, f̄i = fi, k̄i = k−1
i , v̄ = v−1.

Proposition 4.3. Let t = (t1, · · · , tn) ∈ Nn and put |t| = t1 + · · ·+ tn. Then

[k; t] := [k1; t1]![k2; t2]! · · · [kn; tn]! = 0 whenever |t| = r + 1.

In particular, [kn; r + 1]! = 0.

Proof. If tn = 0, the result holds by 4.1(b). So assume tn > 1. Then

[kn; tn]! = −vtn−1k−1
1 · · · k−1

n−1[kn; tn − 1]!(k1 · · ·kn−1 − vr−tn+1)

= −vtn−1k−1
1 · · · k−1

n−1[kn; tn − 1]!
n−1∑
i=1

vt1+···+ti−1(ki − vti)ki+1 · · · kn−1.

(Observe the above sum is telescoping.) Putting ai = −vt1+···+ti−1+tn−1−1k−1
1 · · ·

k−1
i ,

[k; t] =
n−1∑
i=1

ai[k1; t1]! · · · [ki; ti + 1]! · · · [kn−1; tn−1]![kn; tn − 1]! = 0,

8The composition of this isomorphism and the bar involution − below is the “little” version of
the map Ω defined in (2.1.1).
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by induction on tn. �
Remarks 4.4. (1) 4.3 provides a connection between the presentation 4.1 and that
given in [8]. Let S0

r be the commutative subalgebra of Sr generated by k1, · · · , kn−1.
By 4.7 below, the relations 4.1(a),(b) provide a presentation for S0

r. However, by
4.3 and 4.6 below, S0

r can also be described differently, taking generators k1, · · · , kn
satisfying the relations kikj = kjki, [ki; r + 1]! = 0, and k1 · · · kn = vr; see [8,
Prop. 7.4]. This gives another presentation of S0

r, replacing k1, · · · , kn−1 by new
generators k1, · · · , kn and replacing the relations 4.1(a),(b) by those above. This
presentation is studied in [8]; it has fewer relations than 4.3, but one more generator
kn and the relations involving kn.

(2) To justify the relations for S0
r , let Lv(λ) be the irreducible type 1 U-module

with highest weight λ, where λ is a partition of r with at most n parts. Suppose
uµ ∈ Lv(λ)µ, the µ-weight space of Lv(λ). Then µ ∈ Nn, |µ| = r, µ E λ (the
dominance order—see below the proof of Prop. 4.5) and Kiuµ = vµiuµ. Thus,

n∏
i=1

[Ki; ti]!uµ =
n∏
i=1

[vµi ; ti]!uµ.

Since
∏n
i=1[vµi ; ti]! = 0 whenever t1 + · · ·+ tn = r+ 1, Lv(λ) naturally becomes an

Sr-module.

By definition, for t = (t1, · · · , tn) ∈ Nn and A ∈ Ξ, e(A+), f(A−) are the images
of E(A+), F (A−), respectively, under the epimorphism U� Sr. Thus,

e(A+) =
∏

16i6h<j6n
e

(ai,j)
h , f(A−) =

∏
16j6h<i6n

f
(ai,j)
h ,

kt =
n∏
i=1

[
ki; 0
ti

]
.

Here the order in the products is the same as the order used for E(A+) and F (A−)

in §3. The next result is a direct consequence of the defining relations on the ki (cf.
[8, 7.4(c), 7.6(a)]).

Lemma 4.5. Let t = (t1, · · · , tn) ∈ Nn. Then:
(1) kt = 0 if |t| > r.
(2) If |t| = r, then kikt = vtikt; in particular,

[
ki;c
t

]
kt =

[
ti+c
t

]
kt.

Proof. To see (1), observe that[
ki; 0
ti

]
=

ti∏
s=1

kiv−s+1 − k−1
i v+s−1

vs − v−s =
ti∏
s=1

k−1
i v−s+1(k2

i − v2(s−1))
vs − v−s ,

so that [ki, ti]! is a factor of
[
ki;0
ti

]
for every i. Thus, 4.3 implies (1). If |t| = r,

(1) implies that (ki − vti)kt = 0, proving the first (and hence the last) assertion in
(2). �

The subalgebra S0
r of Sr generated by the ki is a quotient of U0. Let

Λ(n, r) = {t | t ∈ Nn, |t| = r}
be the set of compositions of r, and let D be the dominance partial ordering on
Λ(n, r): λ D µ ⇐⇒

∑j
i=1 λi >

∑j
i=1 µi, ∀j. We have the following result (cf. [8,

7.4(b)]).
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Corollary 4.6. The algebra S0
r is a commutative semisimple algebra over Q(v).

The set {kλ}λ∈Λ(n,r) is a complete set of primitive orthogonal idempotents (hence
a basis) for S0

r. In particular, the identity element 1 ∈ Sr has the form 1 =∑
λ∈Λ(n,r) kλ.

Proof. Let λ+ be the partition obtained by permuting the components of λ ∈
Λ(n, r). By 4.4(2), kλ acts on Lv(λ+)λ 6= 0 as an identity operator. Hence, kλ 6= 0.
By 4.5(2), kλkµ = δλ,µkλ for all λ, µ ∈ Λ(n, r); so the kλ are nonzero orthogo-
nal idempotents. The relations given in 4.1 imply that the #Λ(n, r) monomials
kj11 · · · k

jn−1
n−1 in the ki of total degree at most r span S0

r . Thus, by dimension con-
siderations, the linearly independent elements kλ, λ ∈ Λ(n, r), must be a basis for
S0
r. The corollary now follows. �

A dimension comparison gives rise to other bases for S0
r; e.g., part (1) of the

corollary below follows from the proof above.

Corollary 4.7. (1) The elements kj11 · · ·k
jn−1
n−1 (ji ∈ N, j1 + · · · + jn−1 6 r) form

a basis for S0
r.

(2) For any λ ∈ Λ(n, r), let

k′λ :=
[
k1; 0
λ1

] [
k2; 0
λ2

]
· · ·
[
kn−1; 0
λn−1

]
.

Then the set {k′λ}λ∈Λ(n,r) forms a basis for S0
r.

Proof. We prove (2). For λ, µ ∈ Λ(n, r), write λ 6 µ ⇐⇒ λi 6 µi, for all i =
1, 2, · · · , n− 1. Set λ < µ if also λi < µi for some i. By 4.5, k′µkλ 6= 0 ⇐⇒ µ 6 λ.
So 4.6 implies

k′µ =
∑

λ∈Λ(n,r),µ6λ
k′µkλ = kµ +

∑
λ∈Λ(n,r),µ<λ

n−1∏
i=1

[
λi
µi

]
kλ.(4.7.1)

Now the assertion (2) follows easily. �

For A ∈ Ξ and 1 6 i 6 n, define

σi(A) = ai,i +
∑

16j<i
(ai,j + aj,i), σ′i(A) = ai,i +

∑
i<j6n

(ai,j + aj,i).

Then

#{(λ,A) | λ ∈ Λ(n, r), A ∈ Ξ±, λi > σi(A)∀i} =
(
r + n2 − 1

r

)
.

To see this, put ai,i = λi − σi(A). Then the cardinality above is the number of
matrices (ai,j) ∈ Ξ such that

∑
i,j ai,j = r. The identity holds if σi is replaced by

σ′i.
The next result was observed in [7, 4.6] and generalized in [8, 7.9]. For 1 6 i 6

n− 1, let
αi = (0, · · · , 0, 1

i
,−1, 0, · · · , 0).

Lemma 4.8. Let λ ∈ Λ(n, r).
(1) If λi+1 > 1, then eikλ = kλ+αiei.
(2) If λi > 1, then fikλ = kλ−αifi.
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Proof. Formula (2) results by applying the anti-automorphism τ given in 4.2(1) to
(1). We prove (1). By 2.3(5), we have

eikλ =
∏

j 6=i,i+1

[
kj; 0
λj

] [
ki;−1
λi

] [
ki+1; 1
λi+1

]
ei.

Multiplying on the left by
[
ki;0

1

]
and applying 2.3(1),(5) and 4.5(2) gives[

λi + 1
1

]
eikλ =

[
λi + 1

1

] ∏
j 6=i,i+1

[
kj; 0
λj

] [
ki; 0
λi + 1

] [
ki+1; 1
λi+1

]
ei.

By 2.3(4) and 4.5, (1) follows after cancelling
[
λi+1

1

]
. �

Recall the sequence ro(A) (resp., co(A)) of row (resp., column) sums of A defined
in §2.

Corollary 4.9. Let A ∈ Ξ± and λ ∈ Λ(n, r).

(1) If λi > σi(A+), 1 6 i 6 n, then e(A+)kλ = kλ′e
(A+), where λ′ = λ −

co(A+) + ro(A+).
(2) If λi > σi(A−), 1 6 i 6 n, then kλf(A−) = f(A−)kλ′′ , where λ′′ = λ +

co(A−)− ro(A−).
In these cases, we have λ′ D λ and λ′′ D λ.

Proof. If i < j and a 6 λl for all l = i+ 1, · · · , j, by 4.8,

(eai · · · eaj−1)kλ = kµ(eai · · · eaj−1),

where µ = λ + a(αi + · · · + αj−1). Now assume that λi > σi(A+) for all i. Since
e(A+) is a product of terms e(ai,j)

i · · · e(ai,j)
j−1 , we obtain that e(A+)kλ = kλ′e(A+) for

λ′ = λ+
∑

i<j ai,j(αi + · · ·+ αj−1), that is,

λ′1 = λ1 + a1,2 + · · ·+ a1,n,

λ′2 = λ2 − a1,2 + a2,3 + · · ·+ a2,n,

λ′3 = λ3 − (a1,3 + a2,3) + a3,4 + · · ·+ a3,n,

· · ·
λ′n−1 = λn−1 − (a1,n−1 + · · ·+ an−2,n−1) + an−1,n,

λ′n = λn − (a1,n + · · ·+ an−1,n),

(4.9.1)

yielding the required formula. Applying τ in 4.2 to the identity in (1) gives that in
(2). The last assertion follows easily from the definition. �

For part (1) of the following result, see also [8, 7.9].

Lemma 4.10. Let λ ∈ Λ(n, r).
(1) If λi+1 = 0 for some 1 6 i 6 n− 1, then eikλ = kλfi = 0.
(2) More generally, if A ∈ Ξ+ (resp., A ∈ Ξ−) and λi < σi(A) for some i, then

e(A)kλ = 0 (resp., kλf(A) = 0).

Proof. It suffices to prove (1) for ei and (2) for A ∈ Ξ+; the others can be obtained
by applying the anti-automorphism τ , since τ(e(A)) = f(AT ) if AT is the transpose
of A ∈ Ξ+.
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To prove (1), assume λi+1 = 0. By 4.1 and 4.5(2), ki+1eikλ = v−1eikλ. Also,
4.1 and 4.6 imply that eikλ is a Q(v)-linear combination of terms kµei, µ ∈ Λ(n, r).
Since ki+1kµei = vµi+1kµei and µi+1 > 0, it follows that eikλ = 0.

To prove (2), let i be minimal with λi < σi(A). Then i > 1, since σ1(A) = 0.
Suppose a1,i + · · ·+ ai′−1,i 6 λi < a1,i + · · ·+ ai′,i for some 1 6 i′ 6 i − 1. Write
[ai′,ix ] e(A) = m1m2, where

m1 = e
(an−1,n)
n−1 · · · e(ai′,i−x)

i−1 , m2 = e
(x)
i−1e

(ai′−1,i)

i′−1 e
(ai′−1,i)

i′ · · · e(ai′−1,i)

i−1 · · · e(a1,2)
1

and x = λi − (a1,i + · · · + ai′−1,i). By 4.9 and 4.8, [ai′,ix ] e(A)kλ = m1kµm2, where
µ = (µ1, · · · , µn) ∈ Λ(n, r) with µi = (λi − a1,i − · · · − ai′−1,i)− x = 0. Now, since
ai′,i − x > 0, we have m1kµ = m′1ei−1kµ = 0 by part (1), and e(A)kλ = 0. �

Let S+
r (resp., S−r ) be the subalgebra of Sr generated by the ei (resp., fi). Using

PBW bases, [14, 2.5] gives a version of the following result; see also §6 below.

Corollary 4.11. The algebra S+
r (resp., S−r ) is spanned by the elements

{e(A) : A ∈ Ξ+, σ(A) 6 r} (resp., {f(A) : A ∈ Ξ−, σ(A) 6 r}).

Proof. If σ(A+) =
∑

i σi(A
+) > r, then e(A) =

∑
λ∈Λ(n,r) e

(A)kλ = 0 by 4.6 and
4.10(2). The result follows since S+

r is spanned by all e(A) with A ∈ Ξ+, σ(A) 6 r,
by 3.3. �

For A = (ai,j) ∈ Ξ, let bi,j = an−j+1,n−i+1. So TA := (bi,j) is the matrix
obtained by transposing A along its skew-diagonal. Thus, σ′i(

TA) = σn−i+1(A).
The following result is an application of the anti-automorphism γ in 4.2(2). Part
(1) is a special case of [8, 7.9].

Corollary 4.12. Let λ ∈ Λ(n, r).
(1) If λi = 0 for some i with 1 6 i 6 n− 1, then kλei = fikλ = 0.
(2) More generally, if A ∈ Ξ+ (resp., A ∈ Ξ−) and λi < σ′i(A) for some i, then

kλγ(e(TA)) = 0 (resp., γ(f(TA))kλ = 0).

Proof. Define λop = (λop
1 , · · · , λop

n ) by reversing the components of λ = (λ1, · · · , λn)
(i.e., λop

i = λn−i+1). Then, γ(kλ) = kλop , and (1) follows easily from 4.10(1). Since
λi < σ′i(A) means λop

n−i+1 < σn−i+1(TA), by 4.10(2), e(TA)kλop = 0 = kλopf(TA).
Now apply γ. �

The elements γ(e(TA+)) and γ(f(TA−)) can be explicitly described as follows: for
the jth row (reading to the left) aj,n, · · · , aj,j+1 (1 6 j 6 n− 1) of A+, put

nj = (e(aj,n)
j e

(aj,n)
j+1 · · · e

(aj,n)
n−1 ) · · · (e(aj,j+2)

j e
(aj,j+2)
j+1 )e(aj,j+1)

j .

Similarly, for the j-th column (reading downwards) aj+1,j , · · · , an,j of A−, put

n′j = f
(aj+1,j)
j (f(aj+2,j)

j+1 f
(aj+2,j)
j ) · · · (f(an,j)

n−1 f
(an,j)
n−2 · · ·f

(an,j)
j ).

Then γ(e(TA+)) = nn−1nn−2 · · ·n1 and γ(f(TA−)) = n′1n
′
2 · · ·n′n−1.

The following is the “little” version of 3.4, from which it follows.

Lemma 4.13. Let A = (ai,j) ∈ Ξ+ and let m ∈ Sr be any monomial in the ei.
Then the product me(A) is a linear combination of e(B) with B ∈ Ξ+ (and hence, of
e(B)kλ with λ ∈ Λ(n, r), B ∈ Ξ+), and deg(B) 6 deg(m) + deg(A). In particular,
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m itself can be written as a linear combination of e(B)kλ with λ ∈ Λ(n, r), B ∈ Ξ+

and deg(B) 6 deg(m). A similar result holds for the negative part of the algebra.

For any A ∈ Ξ± and λ ∈ Λ(n, r), let

m(A,λ) = e(A+)kλf
(A−).(4.13.1)

By 3.3, 4.6, and 4.10(2), Sr is spanned by all such m(A,λ) with λ ∈ Λ(n, r), and
A ∈ Ξ± satisfying σ(A+) 6 r and σ(A−) 6 r.

Theorem 4.14. For A = (ai,j) ∈ Ξr, let

m(A) =
∏

16i6h<j6n
e

(ai,j)
h

n∏
i=1

[
ki; 0
λi

] ∏
16j6h<i6n

f
(ai,j)
h = e(A+)kλf

(A−),

where λ = λ(A) = (σ1(A), · · · , σn(A)). The set M = {m(A)}A∈Ξr is a spanning set
for Sr.

Proof. Fix B ∈ Ξ± satisfying σ(B+) 6 r and σ(B−) 6 r. Let λ ∈ Λ(n, r). If
λi ≥ σi(B) for all i, then there is a unique A ∈ Ξr such that m(A) = m(B,λ).
Therefore, to prove the theorem, we must show that if λi < σi(B) for some i, then
m(B,λ) lies in the span of M. We proceed by induction on deg(B); cf. (3.1.1). The
result follows from 4.10 if deg(B) = 1. Assume now that deg(B) > 1, and suppose
i is minimal with λi < σi(B). Let Bi be the submatrix of B consisting of the first
i rows and columns, and write e(B+) = m1e

(B+
i ) and f(B−) = f(B−i )m′1. Then

m(B,λ) = m1e
(B+
i )kλf

(B−i )m′1.

By 4.10(2), we can assume λi > σi(B+) (and so λj > σj(B+) for all 1 6 j 6 i by
the minimality assumption on i). Now 4.9(1) implies

m(B,λ) = m1(e(B+
i )kλ)f(B−i )m′1 = m1kλ′e

(B+
i )f(B−i )m′1,

where λ′ = (λ′1, · · · , λ′n) with λ′i = λi − (a1,i + · · ·+ ai−1,i) = λi − σi(B+
i ) > 0; cf.

the last equation in (4.9.1). By remarks after 2.3,

e(B+
i )f(B−i ) = f(B−i )e(B+

i ) + f,

where f is a linear combination of monomials mejhjm
f
j with hj ∈ S0

r and deg(mejm
f
j) <

deg(Bi). Here, mej (resp., mfj) denotes a monomial in the ei (resp., fi). Thus,
deg(m1mejm

f
jm
′
1) < deg(B). Since λ′i < σi(B−i ), m1kλ′f(B−i )e(B+

i ) = 0 by 4.10. By
4.13, m1mej (resp., mfjm

′
1) is a linear combination of e(C)kλ′′ , C ∈ Ξ+ (resp., f(C′)kλ′′ ,

C ′ ∈ Ξ−) with deg(C) 6 deg(m1mej) (resp., deg(C′) 6 deg(mfjm
′
1)). Thus, each

m1kλ′m
e
jhjm

f
jm
′
1 (= m1m

e
jkλ′′hjm

f
jm
′
1) is a linear combination of m(B′,µ) with deg(B′) <

deg(B), since deg(m1m
e
jm

f
jm
′
1) < deg(B). By induction, m(B,λ) is in the span of

M. �

Note that all elements in M are fixed under the involution ¯ defined in 4.2(3).
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5. The isomorphism between Sr and Ur

Recall from 3.1(3) the surjective algebra homomorphism ζr : U� Ur. Since

ζr(Ki) = ζr(0(ei)) = 0(ei, r) =
∑
D∈Ξ0

r

D=diag(d1,··· ,dn)

vdi [D],

where ei = (0, · · · , 0, 1
i
, 0, · · · , 0), and since [D][D′] = δD,D′ [D], we obtain the

following.

Lemma 5.1. We have ζr(K1K2 · · ·Kn) = vr1.

For any i, j, 1 6 i 6 n, 0 6 j 6 r, let

di(j) =
∑

D∈Ξ0
r,di=j

[D];

so ζr(Ki) =
∑r

j=0 v
jdi(j).

Lemma 5.2. For any t ∈ Nn, let

K(t) = [K1; t1]![K2; t2]! · · · [Kn; tn]!.

Then ζr(K(t)) = 0 whenever |t| > r.

Proof. Since ζr(Ki − vd) =
∑r

ji=0(vji − vd)di(ji), we have

ζr([Ki; ti]!) =
r∑

ji=0

(vji − 1)(vji − v) · · · (vji − vti−1)di(ji) =
r∑

ji=ti

ti−1∏
l=0

(vji − vl)di(ji).

Thus, if |t| > r, the fact that j1 + · · ·+ jn > t1 + · · ·+ tn > r implies

ζr(K(t)) =
∑

j1>t1,··· ,jn>tn

(
n∏
i=1

ti−1∏
l=0

(vji − vl)
)

d1(j1) · · · dn(jn) = 0,

since d1(j1)d2(j2) · · · dn(jn) = 0, whenever j1 + j2 + · · ·+ jn > r. �

The following has already been obtained in [14, 2.10] using [9, (3.4.a)].

Corollary 5.3. For any t ∈ Nn, let Kt =
∏n
i=1

[
Ki;0
ti

]
. Then

ζr(Kt) =

{
0, if |t| > r,

[diag(t1, · · · , tn)], if |t| = r.

Proof. The case for |t| > r follows from 5.2. If |t| = r, [9, (3.4.a)] implies that

ζr

[
Ki; 0
ti

]
=

r∑
ji=0

[
ji
ti

]
di(ji) =

r∑
ji=ti

[
ji
ti

]
di(ji),

since
[
j
t

]
= 0 for 0 6 j < t. Thus,

ζr

(
n∏
i=1

[
Ki; 0
ti

])
=

∑
j1>t1,··· ,jn>tn

n∏
i=1

[
ji
ti

]
d1(j1) · · · dn(jn).

If d1(j1) · · · dn(jn) 6= 0 here, then ji = ti, ∀i. Since d1(t1)d2(t2) · · · dn(tn) =
[diag(t1, · · · , tn)], the result follows. �
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Note that we actually have d1(j1)d2(j2) · · · dn−1(jn−1) = [diag(j1, · · · , jn)], where
jn = r− (j1 + j2 + · · ·+ jn−1). Thus, the proof above also shows that, for t ∈ Nn−1

with |t| 6 r,

ζr

(
n−1∏
i=1

[
Ki; 0
ti

])
=

∑
j1>t1,··· ,jn−1>tn−1

n−1∏
i=1

[
ji
ti

]
d1(j1) · · · dn−1(jn−1)

=
∑

λ∈Λ(n,r)
tj6λj

n−1∏
i=1

[
λi
ti

]
ζr(Kλ),

yielding the Ur version of 4.7.1.

Theorem 5.4. The algebra homomorphism ζr : U� Ur induces an isomorphism
Sr ∼= Ur. Moreover, the set M given in 4.14 forms a basis for Sr.

Proof. By 5.1 and 5.2, ζr induces a surjection ζ̄r : Sr � Ur. But 4.14 implies
dim Sr 6 #M = dim Ur; so ζ̄r is an isomorphism. �

We call M a monomial basis for Sr. Using the isomorphism Sr ∼= Ur , we identify
the generators ei, etc. with Ei,i+1(0, r), etc. By 5.3,

kλ = [diag(λ)] := [diag(λ1, · · · , λn)], ∀λ ∈ Λ(n, r).(5.4.1)

Using [1, 5.4], we can identify the elements (mEh,h+1)(0, r) with e
(m)
h , and the

elements (mEh+1,h)(0, r) with f
(m)
h .

Recall the Bruhat ordering on Ξr [1, 1.4]: Fix an algebraically closed field k, and
let V be an r-dimensional vector space over k. As shown in [1, 1.1], the matrices
A ∈ Ξr correspond bijectively to GL(V )-orbits OA of pairs of n-step filtrations of
V . Then, given A′, A′′ ∈ Ξr, A′ < A′′ means OA′ ( OA′′ . Here OA′′ denotes the
Zariski closure of OA′′ . This partial ordering is independent of the algebraically
closed field k.

We have the following identification of the monomial basis elements.

Theorem 5.5. For any A ∈ Ξr, m(A) is exactly the element defined in [1, 3.9(a)].
In particular, in Ur we have

m(A) = [A] +
∑

B∈Ξr,B<A

fB,A[B] (fB,A ∈ Z).(5.5.1)

Proof. By 4.14 and 4.9,

m(A) = e(A+)kλf
(A−) = kλ′e

(A+)f(A−) = e(A+)f(A−)kλ′′ ,

with λ′ = λ− co(A+) + ro(A+) and λ′′ = λ+ co(A−)− ro(A−). Since λ = λ(A) =
(σ1(A), · · · , σn(A)), λ′ = ro(A) and λ′′ = co(A). Recall that e(A+) (resp. f(A−)) is a
product of e(ai,j)

h (resp. f(ai,j)
h ) for all 1 6 i 6 h < j 6 n (resp. 1 6 j 6 h < i 6 n),

which are ordered as in [1, 3.9(a)] (cf. §3 and footnote 6 above). If ν ∈ Λ(n, r) and
D = diag(ν) are such that e(ai,j)

h kν 6= 0 then, by (3.0.3),

e
(ai,j)
h kν = (ai,jEh,h+1)(0, r)[D] = [ai,jEh,h+1 +D′]

for a unique D′ ∈ Ξ0
r with co(ai,jEh,h+1 + D′) = ν. A similar statement holds for

any f
(ai,j)
h kν . Thus, applying this and 4.9 (noting also that k2

ν = kν) repeatedly
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from right to left beginning with f
(an,n−1)
n−1 kλ′′ , where f(an,n−1)

n−1 is the rightmost term
of f(A−), we identify m(A) with a product

P =
∏

16i6h<j6n
[Di,h,j + ai,jEh,h+1]×

∏
16j6h<i6n

[Di,h,j + ai,jEh+1,h].

Here the order of the factors follows that for e(A+) and f(A−), and the diagonal
matrices Di,h,j ∈ Ξ0 are inductively and uniquely determined by the conditions
co(Dn,n−1,n−1 + an,n−1En,n−1) = λ′′ = co(A) (cf. 5.4.1) and co(X) = ro(Y ) if [X ],
[Y ] are two adjacent terms in P . However, P is identified in [1, 3.9(a)] as equaling
an expression of the form given on the right-hand side of (5.5.1). �

The following result will use the relation 4 on Ξ defined above 3.2. Observe
that 4 does not involve diagonal entries: given A,B ∈ Ξ, put A± = A+ + A− and
B± = B+ + B−. Then A 4 B ⇐⇒ A± 4 B±. In addition, [1, 3.6] states that
for A,B ∈ Ξr, A 6 B =⇒ A 4 B and A < B =⇒ A ≺ B. (For more results on
these various poset structures, see [12, §5].)

Corollary 5.6. Suppose m(A,λ) 6= 0 for some A ∈ Ξ± and λ ∈ Λ(n, r). If there
exists D ∈ Ξ0 such that co(A+ D) = λ+ co(A−)− ro(A−), then m(A,λ) = m(A+D).
Otherwise,

m(A,λ) =
∑

B∈Ξr,B≺A
fB,Am

(B) (fB,A ∈ Q(v)).(5.6.1)

Proof. If co(A+D) = λ+co(A−)−ro(A−) for some D ∈ Ξ0, then λ = λ(A+D), and
the first assertion follows from the definition. Now suppose that no such D ∈ Ξ0

exists. By 4.14 and 4.9, m(A,λ) = e(A+)f(A−)kλ′′ , with λ′′ = λ+ co(A−) − ro(A−).
By [1, 5.4(c)],

e(A+)f(A−) = A(0, r) +
∑

j∈Nn,B∈Ξ±6r
B≺A

fB,j,AB(j, r)

for fB,j,A ∈ Q(v), where Ξ±6r = {A ∈ Ξ± | σ(A) 6 r}. By (5.4.1), [diag(λ′′)] = kλ′′ ,
and so A(0, r)kλ′′ = 0, since there is no D ∈ Ξ0 satisfying co(A+D) = λ+co(A−)−
ro(A−). Therefore, m(A,λ) =

∑
fB,f ,AB(j, r)kλ′′ . But by (5.4.1) and (3.0.1) (see

also (3.0.3)), B(j, r)kλ′′ is equal either to 0 or to va[B + D] for some a ∈ N and
some D ∈ Ξ0. The corollary now follows from (5.5.1), using the fact, discussed
above, that A < B =⇒ A ≺ B. �

Another monomial basis for Sr results by replacing the divided powers e
(a)
i by

the ordinary powers eai . Also, if the kλ in M are replaced by the kλ′ defined in
4.7(2), then we obtain a new monomial basis. Monomial bases can be obtained
by applying the anti-automorphism τ defined in 4.2 to the known monomial bases.
However, we next show that M is an integral basis.

6. Integral forms and PBW bases

Recall from §2 the various Z-integral forms U+, U− and U0. These subalgebras
are all free over Z; see 2.2 for a basis of U0. For U+ and U−, the so-called PBW
bases are described as follows. Given a reduced expression w0 = si1si2 · · · siν for
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the longest word w0 of Sn, let i = (i1, i2, · · · , iν). For any c = (c1, · · · , cν) ∈ Nν ,
define

Ec
i = E

(c1)
i1

T̃i1(E(c2)
i2

)T̃i1 T̃i2(E(c3)
i3

) · · · T̃i1 T̃i2 · · ·T̃iν−1(E(cν)
iν

),

where the T̃i are the braid group actions on U [18, 1.3]. Then {Ec
i }c∈Nν is a Z-basis

for U+. Let F c
i = Ω(Ec

i ) (cf. [18, 1.3(d)] and (2.1.1)); so {F c
i }c∈Nν is a Z-basis for

U−.
In [19, 7.8], Lusztig established a relation between the monomial basis given in

3.3 and a PBW basis. To describe this, we choose the following reduced expression
(see (3.2.1)):

w0 = si1si2 · · · siν = (sn−1sn−2 · · · s1)(sn−1sn−2 · · · s2) · · · (sn−1sn−2)sn−1.

So i = (n − 1, · · · , 2, 1, · · · , n− 1, n− 2, n− 1). Let α1, · · · , αn−1 be the standard
list of simple roots of type An−1, and put β1 = αn−1 and βk = si1si2 · · · sik−1(αik).
Then, ordering from left to right down successive rows, we have the following listing
of the positive roots:

{β1, · · · , βν} = {αn−1, αn−1 + αn−2 , · · · , αn−1 + · · ·+ α1,

αn−2, αn−2 + αn−3, · · · , αn−2 + · · ·+ α1,

· · ·
α2, α2 + α1,

α1}.

Write βk =
∑n−1

j=1 pjkαj , and define χi : Nν → Nn−1 by

c = (c1, c2, · · · , cν) 7→ χi(c) = d = (d1, · · · , dn−1), where dj =
ν∑
k=1

pjkck.

Clearly, χi(c′+c′′) = χi(c′)+χi(c′′). Order the fibre χ−1
i (d) of χi over d by setting

c′ <dim c′′ ⇐⇒ dimOc′ < dimOc′′ ,

where Oc denotes the orbit of the quiver representation defined by c (see [19, p.
463]).

Given c ∈ Nν , define, for 1 6 k 6 ν, ck ∈ Nν such that the entry in the k-th
position is ck, and 0 otherwise. (Thus, c =

∑ν
k=1 ck.) Put dk = χi(ck), and define

E((c)) = E(d1)E(d2) · · ·E(dν), where E(dk) = E
(dk1)
1 E

(dk2)
2 · · ·E(dkn−1)

n−1 .

Define a bijection κ : Nν → Ξ+ by sending c to A+
c = (ai,j) so that the first n− 1

components of c become the n-th column reading upwards, and the next n − 2
components become the (n− 1)-th column, and so on, i.e.,

c1 = an−1,n, · · · , cn−1 = a1,n−1, cn = an−2,n−1, · · · ,

and define κ− : Nν → Ξ− similarly. Then we have E(A+
c ) = E((c)). Define

F (A−c ) = F ((c)) := Ω(E((c))).
The following result9 appears in [19, 7.8(b)].

9This version is the result of applying the graph automorphism Ei 7→ En−i+1 to Lusztig’s

version.
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Lemma 6.1. Let i = (n− 1, · · · , 2, 1, · · · , n− 1, n− 2, n− 1) and let c ∈ Nν . For
any c′ ∈ Nν , there exists hc,c′ ∈ Z such that

E((c)) = Ec
i +

∑
c′∈χ−1

i (d):c′<dimc

hc,c′E
c′

i ,(6.1.1)

where d = χi(c). A similar result holds for F ((c)).

Remarks 6.2. (1) Using the language of quiver representations, d = χi(c) is the
dimension vector of the quiver representation Vc corresponding to c (see [19, 4.15]).
Thus, c′ ∈ χ−1

i (d) simply means that Vc′ and Vc have the same dimension vector.
(2) By [4, 7.3(10)] and the remark [4, 7.4], (6.1.1) may be written

E((c)) = Ec
i +

∑
c′∈χ−1

i (d):Oc′⊂6=
Ōc

hc,c′E
c′

i = Ec
i +

∑
c′∈χ−1

i (d):A+
c′≺A

+
c

hc,c′E
c′

i ,

where Ōc is the Zariski closure of Oc. Here we have used the fact, given in [2, 3.2]
(see [12, 5.4] for details), that Oc′ ⊂

6=
Ōc implies A+

c′ ≺ A+
c .

Corollary 6.3. The set {E(A)}A∈Ξ+ (resp., {F (B)}B∈Ξ−) forms a basis for U+

(resp., U−).

By [9], Ur = ζr(U) is an integralZ-form of Ur, generated by [D], (mEh,h+1)(0, r)
and (mEh+1,h)(0, r) with D ∈ Ξ0

r,m ∈ N.

Theorem 6.4. The Z-subalgebra Ur is isomorphic to the subalgebra of Sr generated
over Z by e

(m)
i , f(m)

i (m ∈ Z, 1 6 i 6 n− 1) and kλ (λ ∈ Λ(n, r)). Moreover, the
set M defined in 4.14 forms a Z-basis for Ur. (It is called the monomial basis for
Ur.)

Proof. Since {[A]}A∈Ξr forms a Z-basis for Ur, it follows from 5.5 that M forms a
Z-basis of Ur. The first assertion follows as well. �

Recall from 4.14 that, for any A ∈ Ξr, λ(A) = (σ1(A), · · · , σn(A)). By 4.7(2)
and its proof, we have another integral basis for Ur.

Corollary 6.5. The set

M′ = {e(A+)k′λ(A)f
(A−) | A ∈ Ξr}

forms a Z-basis for Ur.

Let ec
i = ζr(Ec

i ) and fc
i = ζr(F c

i ). For any A ∈ Ξr, let c(A+) ∈ Nν (resp.,
c(A−) ∈ Nν) correspond to A+ (resp., A−) under the bijection κ (resp., κ−) above.
We now obtain the PBW-basis for Ur.

Theorem 6.6. Let i = (n− 1, · · · , 2, 1, · · · , n− 1, n− 2, n− 1). Then the set

Bi = {ec(A+)
i kλ(A)f

c(A−)
i | A ∈ Ξr}

forms a Z-basis for Ur.

Proof. Using 6.1 and noting 4.11 and 6.3, we may write ec(A+)
i = e(A+)+lower terms

and f
c(A−)
i = f(A−) +lower terms. Here the lower terms are relative to 4 by 6.2(2).

By 6.4, the coefficients fB,A in 5.6 must lie in Z. So (5.6.1) gives

e
c(A+)
i kλ(A)f

c(A−)
i = m(A) + lower terms (relative to 4).
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Now the assertion follows from 6.4. �

Corollary 6.7. Maintain the notation used above. The set

B′i = {ec(A+)
i k′λ(A)f

c(A−)
i | A ∈ Ξr}

forms a Z-basis for Ur.

7. The transfer maps Un+r � Ur

We define epimorphisms Un+r � Ur; these are the “transfer maps” in [21]. Let
ki, ei and fi denote the generators for Un+r. Denote the monomial basis for Un+r

by {m(A)}A∈Ξn+r .

Proposition 7.1. There is a unique algebra epimorphism

ψ = ψn+r,r : Un+r � Ur

satisfying ψ(ki) = vki, ψ(ei) = ei and ψ(fi) = fi.

Proof. It follows directly that ψ preserves the relations for ki, ei and fi. �

The maps ψn+r,r agree with the maps φn+r,r, described (for both finite and affine
cases) in [20, 9.1]. The existence of φn+r,r is proved in [21, 1.10] (cf. [10, 5.4(a)] for
a dual treatment in the GLn case). Our next result shows that M shares a similar
property with the canonical basis under the transfer maps. See the conjecture [20,
9.2] and a proof in [22].

Corollary 7.2. The map ψ induces an epimorphism ψ : Un+r � Ur. More pre-
cisely,

ψ(m(A)) =

{
m(A−In), if A− In ∈ Ξr,
0, otherwise.

Here In denotes the n× n identity matrix.

Proof. We first observe that, if λi > 1, then[
vki; 0
λi

]
=
vki − v−1k−1

i

vλi − v−λi

[
ki; 0
λi − 1

]
.

Let 1 = (1, · · · , 1) ∈ Nn. For any λ ∈ Λ(n, n+ r), if λ − 1 ∈ Λ(n, r), then λi > 1
for all i and, by 4.5(2),

ψ(kλ) =
n∏
i=1

vki − v−1k−1
i

vλi − v−λi kλ−1 = kλ−1.

If λ−1 6∈ Λ(n, r), then we have clearly ψ(kλ) = kµ with |µ| = n+ r−x > r, where
x is the number of i with λi = 0. Therefore, ψ(kλ) = 0. The rest of the proof is
clear. �
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8. Presentations for Borel subalgebras

For positive integers n and r, the symmetric group Sr acts on the set

I = I(n, r) := {(i1, · · · , ir) | 1 6 ij 6 n}
by place permutations, and then acts on I × I diagonally.

There is a bijection between Ξr and the set of all Sr-orbits in I × I defined as
follows: If A = (ai,j) ∈ Ξr with λ = ro(A), we let

iA = (1, · · · , 1︸ ︷︷ ︸
λ1 times

, · · · , n, · · · , n︸ ︷︷ ︸
λn times

) and jA = (j1, · · · , jn),

where ji = (1, · · · , 1︸ ︷︷ ︸
ai,1 times

, · · · , n, · · · , n︸ ︷︷ ︸
ai,n times

). The map sending A to the orbit containing

(iA, jA) is a bijection.
We order I by setting i 6 j if and only if i1 6 j1, . . . , ir 6 jr. Clearly, A ∈ Ξr

with A− = 0 ⇐⇒ iA 6 jA. It is known (see, e.g., [13, 1.3.3,5.6.1]) that the
subspace U>0

r (resp., U60
r ) spanned by all [A] where A ∈ Ξr with A− = 0 (resp.,

A+ = 0) is a subalgebra, called a Borel subalgebra. Clearly, we have the following
dimension formula:

dim U>0
r = dim U60

r =
(
r +

(
n+1

2

)
− 1

r

)
=

∑
λ∈Λ(n,r)

n∏
i=1

(
λi + i− 1
i− 1

)
.

We now can state the following.

Theorem 8.1. The subalgebra U>0
r is isomorphic to the algebra B with generators

ei, ki, (1 6 i, j 6 n− 1), subject to the following relations:
(a) kikj = kjki;
(b) [k1; t1]![k2; t2]! · · · [kn−1; tn−1]! = 0, ∀ti ∈ N, t1 + · · ·+ tn−1 = r + 1;
(c) eiej = ejei (|i− j| > 1);
(d) e2

i ej − (v + v−1)eiejei + eje2
i = 0 when |i− j| = 1;

(e) kiej = vε(i,j)ejki, where ε(i, i) = 1, ε(i + 1, i) = −1 and ε(i, j) = 0, other-
wise.

A similar result holds for U60
r .

Proof. Identifying Ur with Sr, it is clear that U>0
r is generated by the ei, 1 6 i < n,

and the kλ, λ ∈ Λ(n, r). Using 5.5, U>0
r has a basis consisting of terms e(A+)kλ,

with λ ∈ Λ(n, r), and λi ≥ σi(A+), ∀i. Temporarily denote the generators of B by
e′i, k

′
i. Because 4.10(2) clearly holds for the algebra B, it is obviously spanned by

elements e′(A
+)k′λ with A+, etc., satisfying the same conditions for the basis vectors

e(A+)kλ of U>0
r . Hence, the natural algebra surjection B� U>0

r is an isomorphism
by dimension considerations. �

Let U>0
r (resp., U60

r ) be the Z-subalgebra of Ur generated by the e
(m)
i (resp.,

f
(m)
i ), kλ with m ∈ N, λ ∈ Λ(n, r).

Corollary 8.2. The set of all e(A)kλ (resp., kλf(A)), where A ∈ Ξ+ (resp., A ∈
Ξ−), λ ∈ Λ(n, r) satisfying λi > σi(A), ∀i, forms a Z-basis for U>0

r (resp., U60
r ).

We have a further decomposition for Ur, U>0
r and U60

r . Let U+
r (resp., U−r ,

U0
r ) be the Z-subalgebras of Ur generated by the e

(m)
i (resp., f(m)

i , kλ). Note that
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U0
r ⊗Z Q(v) = U0

r = S0
r. A PBW basis version of the following is obtained in [14,

2.5-6].

Theorem 8.3. The algebra U+
r (resp., U−r ) is Z-free with basis

{e(A) | A ∈ Ξ+, σ(A) 6 r} (resp., {f(A) | A ∈ Ξ−, σ(A) 6 r}).
Hence, dim S+

r = dim S−r =
(
N+r
r

)
, where N = n(n−1)

2 . Moreover, we have
triangular decompositions:

Ur = U+
r U

0
rU
−
r , U>0

r = U+
r U

0
r , and U60

r = U0
rU
−
r .

Proof. By 4.11, the two sets span U+
r and U−r , respectively. The linear indepen-

dence is seen easily from 8.2 by writing e(A) =
∑
λ:λi>σi(A) e

(A)kλ. �

Note that, by 4.12, the multiplication map from U+
r ⊗U0

r ⊗U−r to Ur is no longer
injective. Thus, there is no tensor product triangular decomposition in this case.

9. Identifying the monomial basis in H

In this section, assume that n = r for simplicity; all results below are still valid
for r 6 n. Let

ω = (1, 1, · · · , 1) ∈ Λ(n, n),
and let H = kωUnkω and H = kωUnkω. By (5.4.1), kω = [In], where In is the
n× n identity matrix. It is well known (see, e.g., [6]) that H is isomorphic to the
Hecke algebra defined in (1.0.1). However, in this section, we will not assume this
identification, but rederive it from the monomial basis theory for q-Schur algebras.
At a deeper and more interesting level, 9.4 explicitly identifies a basis Mω ⊂M of
H ⊂ Un as a monomial basis involving certain monomials in the Kazhdan-Lusztig
elements C′s; see 9.6(2).

For w ∈ Sn, the permutation matrix Aw ∈ Ξn is defined inductively by setting
Aw = AyAs, where w = ys with y < w and s = (i, i + 1) for some i. Writing
m(Aw) = e(A+

w)kλf(A−w) as in 4.14, 4.9 implies that e(A+
w)kλ = kωe(A+

w) and kλf(A−w) =
f(A−w)kω; so m(Aw) ∈ H.

Proposition 9.1. The algebra H is free over Z with basis Mω = {m(Aw) | w ∈ Sn}.
Proof. For A ∈ Ξn, if kω[A]kω 6= 0, then ro(A) = co(A) = ω. So A is necessarily
a permutation matrix. Thus, Mω ⊆ kωMkω. By 5.5, if A is not a permutation
matrix and kωm(A)kω 6= 0, then kωm(A)kω is a linear combination of the elements of
Mω. Therefore, Mω forms a basis for H . �

We record the following simple commutation relations.

Lemma 9.2. Let m be a monomial in the fi. For any 1 6 i 6 n − 2, let ∂i(m) =
2 degi(m)− degi−1(m)− degi+1(m), where degj denotes the degree of fj in m. Then
we have the following.

(1) If ∂i(m) = 1, then
[
k̃i;0

1

]
mkω = −mkω.

(2) If m = m1fim2 and ∂i(m2) = 0, then m1fieim2kω = m1eifim2kω.

Proof. Since
[
k̃i;0

1

]
fi = fi

[
k̃i;−2

1

]
and

[
k̃i;0
1

]
fj = fj

[
k̃i;1

1

]
for j = i − 1, i + 1,

it follows that
[
k̃i;0

1

]
m = m

[
k̃i;−∂i(m)

1

]
. Since

[
k̃i;c
1

]
kω = ckω for c = 0,−1 and

fiei = eifi −
[
k̃i;0

1

]
, the two assertions follow immediately. �
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Let si = (i, i+ 1) and put

Ci = m(Asi) = e(A+
si

)kλ(si)f
(A−si

) = eikλ(si)fi = kωeifikω = kωfieikω,

where

λ(si) = λ(Asi ) = (σ1(Asi), · · · , σn(Asi)) = (1, · · · , 1, 0
(i)
, 2, 1 · · · , 1)

as defined in 4.14. For any i we have kωei = eikλ(si) by 4.8, since λ(si) = ω + αi.

Theorem 9.3. The elements Ti := Ci − v−1, 1 6 i 6 n − 1, satisfy the following
relations:

(a) (Ti − v)(Ti + v−1) = 0;
(b) TiTj = TjTi when |i− j| > 1;
(c) TiTi+1Ti = Ti+1TiTi+1 when 1 6 i 6 n− 2.

In particular, Ti is invertible and T−1
i = Ci − v.

Proof. If T−1
i has the required form, then (a) follows. So, to prove (a), we must

show that
(Ci − v−1)(Ci − v) = 1.

This is clear, since

C2
i = (eikλ(si)fi)(eikλ(si)fi) = eikλ(si)(eifi −

k̃i − k̃−1
i

v − v−1
)kλ(si)fi

= (v + v−1)eikλ(si)fi = (v + v−1)Ci.

Here we use 4.5(2) and the fact that, since the i-th component of λ(si) is 0, 4.12(1)
implies kλ(si)ei = 0. The relation (b) follows easily from the relation CiCj = CjCi
whenever |i− j| > 1. We now prove (c). Since

TiTi+1Ti = CiCi+1Ci − Ci − v−1(CiCi+1 + Ci+1Ci) + v−2(Ci + Ci+1) + v−3,

and a similar formula holds with i and i+ 1 switched, it suffices to prove that

CiCi+1Ci − Ci = Ci+1CiCi+1 − Ci+1.(9.3.1)

For notational simplicity, put C = CiCi+1Ci and C′ = Ci+1CiCi+1. Then

C = kω(eifiei+1fi+1eifi)kω, C′ = kω(ei+1fi+1eifiei+1fi+1)kω.

Now, by 4.1,

eifiei+1fi+1eifi = eiei+1(fiei)fi+1fi = eiei+1(eifi −
[
k̃i; 0

1

]
)fi+1fi

= eiei+1eififi+1fi −
[
k̃i;−1

1

]
eiei+1fi+1fi.

By the quantum Serre relations,

eiei+1eififi+1fi = (e(2)
i ei+1 + ei+1e

(2)
i )(f(2)

i fi+1 + fi+1f
(2)
i )

= e
(2)
i ei+1(f(2)

i fi+1 + fi+1f
(2)
i ) + ei+1e

(2)
i (f(2)

i fi+1 + fi+1f
(2)
i ).

Since kωe
(2)
i = 0 = kωei+1e

(2)
i by 4.12(1), multiplying by kω gives

C = −kω
[
k̃i;−1

1

]
eiei+1fi+1fikω = kωeiei+1fi+1fikω.
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The calculation of C′ can be done similarly by switching the subscripts i and i+ 1;
so

ei+1eiei+1fi+1fifi+1 = (e(2)
i+1ei + eie

(2)
i+1)(f(2)

i+1fi + fif
(2)
i+1)

= e
(2)
i+1ei(f

(2)
i+1fi + fif

(2)
i+1) + eie

(2)
i+1fif

(2)
i+1 + eie

(2)
i+1f

(2)
i+1fi.

However, in this case, only the first two summands vanish after multiplying by kω.
Thus,

C′ = kω(eie
(2)
i+1f

(2)
i+1fi −

[
k̃i;−1

1

]
ei+1eififi+1)kω.

Now, by 2.3(7) and the last relation in 4.1, we have

ei(e
(2)
i+1f

(2)
i+1)fi

= ei(f
(2)
i+1e

(2)
i+1 + fi+1

[
k̃i+1;−2

1

]
ei+1 +

[
k̃i+1; 0

2

]
)fi

= eif
(2)
i+1e

(2)
i+1fi +

[
k̃i+1; 1

2

]
eifi +

[
k̃i+1; 1

1

]
ei(ei+1fi+1 −

[
k̃i+1; 0

1

]
)fi.

The first two terms vanish after multiplying by kω. The last two terms equal[
k̃i+1; 1

1

]
eiei+1fi+1fi −

[
k̃i+1; 1

1

]2

eifi.

On the other hand, we have

ei+1eififi+1 = ei+1(fiei +
[
k̃i; 0

1

]
)fi+1 = ei+1fieifi+1 +

[
k̃i; 1

1

]
ei+1fi+1.

Since kωei+1fieifi+1kω = 0, we obtain after combining everything that

C′ = kωeiei+1fi+1fikω − Ci + Ci+1 = C − Ci + Ci+1.

This proves (9.3.1), and hence (c). �

Interestingly, the commuting relations 4.1(g) and the quantum Serre relations
4.1(d),(e) give rise to the braid relation 9.3(c). We also record the following relations
on the elements Ci (cf. [8, (H1-3)] and [24, §2]):


(1) C2

i = (v + v−1)Ci;
(2) CiCj = CjCi for |i− j| > 1;
(3) CiCi+1Ci − Ci = Ci+1CiCi+1 − Ci+1 for 1 6 i 6 n− 2.

(9.3.2)

For a permutation y : i 7→ yi in Sn, let

I = Iy = {i | i < yi}, J = Jy = {j | j > yj}.
Since

∑n
i=1(i− yi) = 0, we have immediately

deg(A+
y ) =

∑
i∈I

(yi − i) =
∑
j∈J

(j − yj) = deg(A−y ).

We fix an order on I = {i1, · · · , is} (s = #I) such that yi1 > · · · > yis and an order
on J = {j1, · · · , jt} (t = #J) such that j1 < · · · < jt. For any i ∈ I and j ∈ J we
put

e[i,yi) = eiei+1 · · ·eyi−1, f(j,yj] = fj−1fj−2 · · ·fyj .
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Here for a < b and c > d, we use the notation

[a, b) := {a, a+ 1, · · · , b− 1}, (c, d] := {c− 1, c− 2, · · · , d}.
Then

e(A+
y ) = e[i1,yi1) · · ·e[is,yis ), f(A−y ) = f(j1,yj1 ] · · · f(jt,yjt ]

.

Theorem 9.4. For any w ∈ Sn, there is a reduced expression w = si1 · · · sil
satisfying

m(Aw) = Ci1 · · · Cil .

Proof. For i = 1, · · · , n, identify Si with the subgroup of Sn generated by s1, · · · ,
si−1. We induct on the smallest integer m such that w ∈ Sm. If m = 1, then w = 1;
so m(Aw) = kω, the identity element in H , and the result is clear. Thus, assume, for
some m > 1, that m(Az) = Ci1 · · · Cil whenever z ∈ Sm−1. For notational simplicity,
we take m = n. It suffices to prove that if z = wsn−1 · · · si for some i, i 6 n and
some w ∈ Sn−1, then m(Az) = m(Aw)Cn−1 · · ·Ci.10 In the case i = n, this means
just that z = w ∈ Sn−1, and the result is true by the inductive hypothesis. So we
proceed by downward induction on i.

Write An = Aw, and for 1 6 i 6 n− 1, set

Ai = Ai+1Asi = AnAsn−1 · · ·Asi .
Since Ai is obtained from Ai+1 by switching the ith and (i+1)th columns of Ai, the
permutation matrix Ai has a 1 in the (n, i)-position. Also, the entries in the first
i− 1 columns of Ai and Aw agree identically. In addition, the ith, · · · , (n − 1)th-
columns of Aw identify with the (i+ 1)th, · · · , nth columns of Ai. Simply put, the
matrix Ai is obtained from the matrix Aw by cyclically permuting to the right the
last n− i+ 1 columns of Aw.

Put y = wsn−1 · · · si+1, so that Ai+1 = Ay. Write B = (bi,j) = Ay for simplicity.
We can assume that m(Ay) = m(Aw)Cn−1 · · ·Ci+1. By the notation introduced before
the statement of the theorem, jt = n (t = #J) and yjt = i + 1. We must consider
two cases:

Case 1. Suppose i 6= ya for all a ∈ J . Thus, the 1 appearing in column i of B
does not appear in B−. It is either on the diagonal or above the diagonal. That is,
there exists k 6 i such that bk,i = 1.

Case 1a. If i 6∈ (ja, yja ] for all a = 1, · · · , t, then ei commutes with every factor
f(j,yj] appearing in f(B−), and hence

m(B)Ci = kωe
(B+)f(B−)eifikω = kωe

(B+)eif
(B−)fikω.(9.4.1)

Since the 1 in the i-th column of B is not in B−,

f(B−)fi = f(A−i ).(9.4.2)

If k = i, then (Ai)i,i+1 = 1 (= (Ai)n,i) and

e(B+)ei = e[i1,yi1) · · · e[ia,yia )eie[ia+1,yia+1) · · · e[is,yis),

where yia+1 < i 6 yia : if i = yia , then the i-th column of B would have two
1’s, which is impossible. Thus, i < yia and e(B+)ei = e(A+

i ). Now 9.4.2 gives
m(B)Ci = m(Ai).

10Here we use the fact that if w = t1 · · · tu is a reduced expression for w, then z =
t1 · · · tusn−1 · · · si is a reduced expression for z.
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If k < i, then i = ya for some a ∈ I and

e(B+) = e[i1,yi1) · · · e[a,i) · · ·e[is,yis ).

Since ei commutes with all the factors on the right-hand side of e[a,i) and e[a,i)ei =
e[a,i+1), it follows that e(B+)ei = e(A+

i ), and hence, combining 9.4.2, m(B)Ci = m(Ai).
Case 1b. If i ∈ (ja, yja ] for some a ∈ J (perhaps more than one), then ja > i >

yja . If b is the largest among those a’s, the monomial m =
∏
b<a<t f(ja,yja ] (t = #J)

does not involve fi. Hence, m does not involve fi−1 and fi+1: if fi−1 is involved,
then ja − 1 = i− 1 and so ja = i for some a > b, but jb > i, which is absurd since
jb < ja; if fi+1 is involved, then i+ 1 = jya for some b < a < t and so column i+ 1
of B has two 1’s. Thus, by 4.1,∏

b6a6t
f(ja,yja ]eifi = f(jb,yjb ]ei

∏
b<a6t

f(ja,yja ]fi

= fjb−1 · · · (fiei)fi−1 · · ·
∏

b<a6t
f(ja,yja ]fi.

Since jt = n and yjt = i + 1, it follows that ∂i(fi−1 · · ·
∏
b<a6t f(ja,yja ]fi) = 0.

By 9.2(2),
∏
a>b f(ja,yja ]eifikω = ei

∏
a>b f(ja,yja ]fikω. A similar argument, using

induction and repeatedly applying 9.2, implies that ei “commutes” with every
f(ja,yja ] with i ∈ (ja, yja ] and i < ja − 1. Finally, if i = ja − 1 occurs, then for
any 1 6 b 6 a− 1 we have i 6∈ (jb, yjb ]. So, after switching ei with f(ja,yja ], which
is possible using 9.2(2) again, we may commute ei with the rest of the product.
This proves 9.4.1 in this case. The rest of the argument is entirely similar to the
previous case. Therefore, we eventually obtain m(B)Ci = m(Ai).

Case 2. Suppose i = yj for some j ∈ J . Then the 1 in column i of B appears in
B−. So there exists k ∈ J , k > i, with bk,i = 1. This implies that B+ = A+

i . Let
k = ja. For any a < b 6 t, if i ∈ (jb, yjb ], then i 6= yjb . We claim that i < jb − 1.
Suppose the contrary: i = jb−1. Then jb = i+ 1 and so k = ja < jb = i+ 1, which
is absurd since k > i. Thus, from the argument in Case 1b, we see that

(
∏

a<b6t
f(jb,yjb ])eifikω = ei(

∏
a<b6t

f(jb,yjb ])fikω.

Therefore, we have

f(B−)eifikω = f(j1,yj1 ] · · ·f(ja,i]ei · · ·f(n,i+1]fikω

= f(j1,yj1 ] · · ·f(ja,i+1](eifi −
[
k̃i; 0

1

]
) · · · f(n,i+1]fikω

= eif
(B−)fikω − f(j1,yj1 ] · · · f(ja,i+1]

[
k̃i; 0

1

]
· · · f(n,i+1]fikω.

Here the first term requires a commutation between f(j1,yj1 ] · · · f(ja,i+1] and ei,
which can be argued as above by 9.2.

We claim that f(B−)fikω = 0. Indeed, since fikω = kλ(si)fi, it suffices to prove
that f(B−)kλ(si) = 0. We observe that the ith entry λ(t)

i of λ(t) := λ(si) is 0 and,
if f(n,i+1]kλ = kλ(t−1)f(n,i+1], then, by 4.8, the ith entry λ(t−1)

i of λ(t−1) is also 0.
Inductively, for any a < b < t, if f(jb,yjb ]kλ(b) = 0, then we are done. Otherwise, we

have f(jb,yjb ]kλ(b) = kλ(b−1)f(jb,yjb ] such that λ(b−1)
i = 0. This is seen as follows: if

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MONOMIAL BASES FOR q-SCHUR ALGEBRAS 1619

i 6∈ (jb, yjb ], then i < yjb and λ
(b−1)
i = λ

(b)
i = 0; if i ∈ (jb, yjb ], then fi+1fifi−1 is a

factor of f(jb,yjb ], which guarantees λ(b−1)
i = 0. In the worst case scenario, 4.12(1)

implies f(k,i]kλ(a) = 0, since λ(a)
i = 0.

On the other hand, the argument above shows that
∏
a<b<t f(jb,yjb ] has the same

number of fi−1, fi and fi+1; while f(n,i+1]fi has one fi+1 and one fi. By 9.2(1),[
k̃i; 0

1

] ∏
a<b6t

f(jb,yjb ]fikω = −
∏

a<b6t
f(jb,yjb ]fikω.

Combining all these observations, we obtain

f(B−)eifikω = f(j1,yj1 ] · · ·f(ja,yja+1] · · · f(n,i+1]fikω = f(A−i )kω.

Since B+ = A+
i , we have proved that m(B)Ci = m(Ai). �

Corollary 9.5. The integral algebra H is generated over Z by the Ci, and hence,
by the Ti. Therefore, H is isomorphic to the Hecke algebra H(Sn) (1.0.1). In
particular, the Ci together with the relations (9.3.2) form a presentation of H.

Proof. The first two assertions follow from 9.3 and 9.4. Thus, the generators and
relations given in 9.3 form a presentation for H , easily giving the last assertion. �

Remarks 9.6. (1) With this presentation, the monomial basis Mω is a set of certain
monomials in the Ci.

(2) In the notation of [15], Ti corresponds to T̃si = v−1Tsi and Ci corresponds to
C′si .
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