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MONOMIAL BASES FOR ¢-SCHUR ALGEBRAS

JIE DU AND BRIAN PARSHALL

ABSTRACT. Using the Beilinson-Lusztig-MacPherson construction of the quan-
tized enveloping algebra of gl,, and its associated monomial basis, we inves-
tigate g-Schur algebras Sq(n,r) as “little quantum groups”. We give a pre-
sentation for Sq(n,r) and obtain a new basis for the integral g-Schur algebra
Sq(n,r), which consists of certain monomials in the original generators. Fi-
nally, when n > r, we interpret the Hecke algebra part of the monomial basis
for S¢(n,r) in terms of Kazhdan-Lusztig basis elements.

1. INTRODUCTION

Let U = U(g) be the quantized enveloping algebra over Q(v) associated to a
finite-dimensional complex semisimple Lie algebra g, and let U be its Lusztig Z-
form, where Z = Z[v,v~!]. When g has a simply laced root system, monomial bases
for the positive (resp., negative) part U™ (resp., U ™) of U have been constructed in
[19, 7.8] using the theory of Ringel-Hall algebras; see [3] for an approach that works
for all finite types. For example, the monomial basis for U™ consists of certain
explicit (ordered) monomials in the standard generators for UT. The algebra U
also has a PBW-type basis, but monomial bases are simpler than PBW bases and,
in addition, they are closely related to canonical (or crystal) bases.

Let S4(n,7) be a ¢-Schur algebra over Q(v); see below for the definition of
Sq(n,r) and the associated Hecke algebra H = H(&,.). The ¢-Schur algebras were
introduced by Dipper and James [5], [6] (see [16] for an earlier version in the context
of quantum groups). These algebras, as well as their analogues over other fields,
play an important role in the non-defining representation and cohomology theories
of the finite general linear groups. It is natural to ask how to construct monomial
bases for the S;(n,r). Using a beautiful geometric setting for g-Schur algebras,
Beilinson, Lusztig, and MacPherson [1] studied the quantized enveloping algebra
U = U(gl,,) of the reductive Lie algebra gl,, as a “limit” of ¢g-Schur algebras and
described a monomial basis for U in terms of another basis whose elements are
formal infinite sums indexed by certain n x n matrices over Z. In particular, there
is a natural surjection U — Sy(n,r), arising as a “truncation” map; it carries
an infinite sum in U to a finite sum in Sy(n,r). In addition, the results of [I]
have an integral version (i.e., over Z) [d], and there is a corresponding surjection
U — Sy(n,r). Eventually, this work leads to a quantum Weyl reciprocity [11], also
valid at the integral level.
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1594 JIE DU AND BRIAN PARSHALL

This paper applies the approach of [I] to obtain a natural monomial basis for
Sq(n, 7). Thus, Theorems (.4 and present monomial bases for S,(n,r) and its
integral version S;(n, r), while Theorem [5.5] describes the monomial basis elements
in terms of certain elements constructed in [1]. As we show elsewhere in the paper,
these bases are very natural and enjoy nice properties not shared by the PBW basis;
see, e.g., [£.9] 0.4l For example, if n > r, then H C Sy(n,r), and Theorem 0.4
shows how the monomial basis “restricts” to a monomial basis for H (given as
monomials in the Kazhdan-Lusztig elements C € H [15]).

This work was initially motivated by [7] (as well as by an announcement of the
results in [§8] by Doty at the 2001 New Orleans AMS meeting). Their work gives
an explicit presentation of Sy(n,r) as well as a PBW-type basis S,(n,r). We were
motivated to see how to cast these results in the more geometric setting of [I]. Both
a presentation (in a slightly different form) and a PBW basis also can be obtained
as a new application of [1]; see Theorems 5.4 and 6.6.

The table below displays three different bases for S,(n,r), indicating how they
stand in relation to bases for both the integral quantum enveloping algebra Uz (gl,,)
and the integral Hecke algebra H(&,) with r < n.

H(S;) | Sq(n,7) Uz(gl,)
T, [A] PBW basis
Cl, {A} | Canonical basis (for UZ (gl,))
ClL---Cl | m™ | Monomial basis

The “orbital” basis elements [A] are indexed by n x n matrices over N whose
entries sum to r. This basis is the normalized version of the usual standard basis
for a centralizer algebra, whose elements are denoted by gzﬁgl\u in [6] 1.4]. Hence, its

Hecke algebra counterpart consists of the normalized basis elements T}, = v~ 4T,
In Uz(gl,,), this basis corresponds to a PBW basis by means of its connection with
a canonical (or crystal) basis; see [14] for further connections. All three algebras
have canonical bases indicated in the second row in the table. They arise naturally
from the corresponding monomial bases.

This work provides a foundation for [12], which directly relates the geometric
approach [I] to the theory of Ringel-Hall algebras for linear quivers. In particular,
this leads to a new connection between the theories of Ringel-Hall algebras and
g-Schur algebras.

Some notation. Throughout, Z = Z[v,v~!] is the ring of Laurent polynomials
in a variable v. Write ¢ = v? and let ~ : Z — Z be the ring automorphism
satisfying v’ + v~ for all i. For m € N, put
\ . vt — Tt
[m]" =1[1][2] - - - [m], where [i] = P—
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MONOMIAL BASES FOR ¢-SCHUR ALGEBRAS 1595

If |¢| < ¢, then [§] =0, [C]—H[[C—t].forc>t20.
Let H = H(S&,) be the Hecke algebra over Z for the symmetric group &,.. If
S={(1,2),(2,3), -+, (r—1,r)}, then H has Z-basis Ty,, w € &,, and relations

{TTszqw, l(sw) = 1+ 1(w), seSweW:;

(10.1) (Ts +1)(Ts —q) =0, s€S.

If V is a free Z-module of rank n, there is a natural right action of H on V®" by
“place” permutations. The ¢-Schur algebra S, (n,r) over Z is the centralizer ring

(1.0.2) Sy(n,r) = Endg (VE").

The algebra S, (n,r) is Z-free of rank (”27*1 ). For more details, see [B], [11]. Put
H=Q(v) ® H and Sy(n,r) = Q(v) ® Sg(n,r).

2. THE QUANTIZED ENVELOPING ALGEBRA OF gl,

The definition below for the quantized enveloping algebra of gl, is a slightly
modified version of Jimbo [16]; see [23], 3.2], [9], 1.1].

Definition 2.1. The quantized enveloping algebra of gl,, is the algebra U over
Q(v) generated by the elements

Ei,F, (1<i<n—1), K, K;' (1<i<n)

K3
subject to the following relations:
(a) K,K; = K;K;, KK '=
(b) K;E; = v E;K;, where €(i,i) = 1, e(i + 1,i) = —1 and €(i,5) = 0,
otherwise;
K,F; = v F, K; with €(i, j) as in (b) above;
EEfEEz,FF Fthen|z—j|>1

)
)

¢) BiF; — FyE; = 6; ;5B here K; = KKk
) E2E; — (v+ v YE,E;E; + E;E? = 0 when |i — j| = 1;

(g) F?F; — (v+v YEF;F, + F;F? =0 when |i — j| = 1.

Relations 2.T(f),(g) are called the quantum Serre relations. The subalgebra gen-
erated by the E;, F; and K; (1 < i < n— 1) is the quantized enveloping algebra
U, (sly,).

There is a unique Q-algebra anti-isomorphism 2 : U — U defined by
(2.1.1)

QE)=F, QF)=E, QK;)=K" and Q)=v"
Clearly, Q extends the anti-isomorphism 2 defined in [I8] 1.2(a)] for U, (sl,,).

Let UT (resp., U™, UY) be the subalgebra of U generated by the E; (resp., Fj,
K;). There is a triangular decomposition Ut @ U@ U~ il (J+YOU~ = U which
is an isomorphism of vector spaces—see below for references in the integral case.
Clearly, the elements KJ := Ki'-.- KJ» for all j = (j1, -+ ,jn) € Z" form a basis
for U°. The subalgebras Ut and U~ are both N-graded in terms of the degrees of
monomials in the E; and F;. For monomials M in the E; and M’ in the F;, and an
element h € U°, write deg(MhM') = deg(M) + deg(M’). Observe that deg does

not define an algebra grading on U: the appropriate algebra grading (which we do
not use) would be given by deg'(MhM') = deg(M) — deg(M").
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1596 JIE DU AND BRIAN PARSHALL

For an analogue of a Kostant Z-form over Z, define, for m,t € N and ¢ € Z,

E™ ™ . L R I o
i(M): . i(m): i and K;;c :H v P’ .
[m] [m] t V8 — s

s=1
Following [23], let U (resp., Ut, U~) be the Z-subalgebra of U generated by all
E(m) F(m) K; and [ 0} (resp., E(m) F(m)) Let U° be the Z-subalgebra of U

generated by all K; and [ it; 0} Then U, U*,U° U~ are Z-forms for U, UT, UY,

U, respectively, and there is a triangular decomposition UT@U@U~ = UTUU~
= U as free Z-modules (apply the anti-automorphism 2 to the triangular decompo-
sition given in [23] (3.2.6)])[] The following is known from [I8, 2.14] and [J, Lemma
2.1].

Lemma 2.2. The algebra U° has a Z-basis

Klél .. .Kg" |:I{tll; 0:| |:I{tr: O:| , 0; € {0, 1},ti € N.

The formulas below will be useful; see [18, p.269], [17, 4.1(a)].

Lemma 2.3. The following formulas hold in U:
O [ = 1] (s> 00
@) 5] ot (S5 = Do ] (3 1)
(3) [%7 = Logyeu (-1 [C“ KIS =002 1)
(4) [%5] = Logye vt LK [K0] (12 0,02 0)
() B [15] = [Ko5-r) B and B[] = [Femjerm] B0,
(© F™ (5] = [Fogom] B ana 5 [556] = [eyemn] £
(7) For any positive integers k,l, we have
min(k,l) k o _ k1]
k) (1 -t i3 2t — k — k—t
EVED = 3 F )[z t ]Ei( )
t=0
Proof. The formulas (1)-(4) and (7) are proved exactly as in [I7]. Finally, (5) and
(6) follow from 2.1(b),(c) by induction on m. O

The commutator formula B23(7) plus 23(5),(6) show that, for monomials M in
the E; and M’ in the F;, MM' = M'M + 3, M;h; M, where M; (resp., M) are

monomials in the E;’s (resp., Fy’s), h; € U and

deg(M;jh; M) < deg(MM') —

INote that the Lusztig Z-form ‘U of Uy (sly) is generated by all Egm), Fi(m), K;, and K 1.
Thus, by [9] 2.6], the Z-form U can be generated by all Egm), Fi(m), K;, k7', K1 and [Ki’ O].
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3. THE BEILINSON-LUSZTIG-MACPHERSON CONSTRUCTION
AND MONOMIAL BASES

Let = be the set of all n x n matrices over Z with all off-diagonal entries in N,
and let Z = M, (N) be the subset of = consisting of matrices with entries all in N.
Let 0 : E — N be the map sending a matrix to the sum of its entries. Then, for
r € N, the inverse image =, := o~ 1(r) is the set of n x n matrices in = whose entries
sum to . For 1 <4,j < n, let E; ; € Z be the matrix (ax,;) with ar,; = 0; 10;,.

Let U, be the algebra over Z introduced in [1] 1.2}5 It has a normalized Z-basis
{[A]} aez, defined in [Il 1.4]. In particular, if A € N® with D = diag(\) € E,, then
(cf. [T, 1.3])

(3.0.1)
[4], if A=ro(A)

0, otherwise;

A, if XA =co(A)

, otherwise,

[D][A]= { and [4][D]= {

where ro(A4) = (Z; INTEERND O an,j) and co(A) = (>, a1, -+, ), ain) are the

sequences of row and column sums of A = (a; ;). We put U, = Q(v) ®z U,.

In [@ 1.4], the algebra U, is shown to be naturally isomorphic to the g-Schur
algebra S,(n,r) as defined in (LIL2). In the sequel, we often call U, and U, ¢-Schur
algebrasﬁq

Let K be the Z-algebra (without 1), defined in [1} §4], with basis {[A]} , .z, and
let U = Q(v)®z K[ The multiplication - in K (and hence in U) is defined in [T, 4.4]
by specializing v’ to 1 from another algebra over Q(v)[v’, v’ 71] whose multiplication

is induced from the stabilization property of the multiplication of g-Schur algebras.
By the definition in [T} 4.5], the relations .01, D € =, continue to hold in U.

As in [T}, 5.1], Uy is the vector space of all formal (possibly infinite) Q(v)-linear
combinations ) , .= Ba[A] satisfying: for diagonal D, D" € =, the sums

SO BaD] (Al and Y Bald]- (D]

A€E A€=E
are finite. Defining the product of >~ , = Ba[A], > 5.z vB[B] € U, to be
S BarslA] - 3]
A,B

gives U, an associative algebra structure, with 1 = Y_[D], the sum over all diagonal
D € =. Also, U is naturally a subalgebra (without 1) of Ug.

2The algebra Uy is denoted K, in [I].

3The algebra U, can be roughly described as follows: Let G = GL,«(pd) for some prime power
pt. Let Sq(n,r) = C ® Sq(n,r) via the base change Z — C, v — p/2. Tt is well known (see, e.g.,
[5, (2.24]) that

(3.0.2) S¢(n,r) 2 Endg (P ind§, C);

here A runs over all compositions A of r into n parts, and Py denotes the corresponding para-
bolic subgroup of G. Using the geometry of relative positions of pairs of m-step filtrations on
r-dimensional space, [I] defines U, directly as a kind of “deformation” of (B.0.2).

4The notation here has been abused as in [I]: the basis {[A]} acz, for a ¢-Schur algebra is not
a subset of the basis {[A]} , _z for U. Given A € E, it should always be clear from the context
whether [A] is to be regarded as a basis element of U or of U;.
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1598 JIE DU AND BRIAN PARSHALL

Let Z* be the set of all A € = whose diagonal entries are zero. Given r € N,

r>0,Ac=F and j = (j1, - ,jn) € Z", we define
AGor)= Y wXi%i[A+DleU,,
s .
A(§) =A(j,00) = > vZi i [A+ D] € U,
De=0

where Z° (resp., EO) denotes the subset of diagonal matrices in = (resp., g) and
D = diag(dy,- - ,dy,). If 0(A) > r, then A(j,r) = 0. For any diagonal matrix
D € =,, we have from (B.0.0)
(3.0.3)
A+ D’ if co(D') = ro(D) — co(A) € N™;
Atoyp) _ A+ DL i colD') = ro(D) - co() €
0, if such a D’ € N™ does not exist.
Of course, 0 := (0,---,0) € N™. Obviously, the D’ in (B03) satisfying co(D’) =
ro(D) — co(A) is unique, if it exists.
Let V be the subspace of Uy, spanned by
B={A(j)|AcE* jez"}.
The next result is proved in [1, 5.5, 5.7].

Proposition 3.1. (1) V is a subalgebra of Uy, with Q(v)-basis B. It is generated
by Enp+1(0), Ept1,1(0) and 0(3) for alll < h<mn andje Z".
(2) For any positive integer r, the q-Schur algebra U, is generated by the elements
Eh7h+1(077"), Eh+1,h(07r)7 and 0(j77a)
foralll1 < h<nandjeN".

(3) There is an algebra isomorphism U = V satisfying

Ep i+ Eppi1(0), K —0G), Fur Enin(0)
and an algebra epimorphism (. : U — U, satisfying
Ep v Eppg1(0,7), K9 —0(,r), Fy— Epi1n(0,r).

We shall identify U with V and hence identify Ej, with Ej ;4+1(0), etc., in the
sequel. We now describe a monomial basis for U.

Let 21 (resp., Z7) be the subset of Z consisting of those matrices (a; ;) with
ai; = 0 for all i > j (resp., i < j). For A € E, write A = AT + A° + A~ with
AT €=+, A0 € =0, and A~ € =~. We also introduce the degree functionf]

(3.1.1) deg(4) = Y |j—ilai,.
1<i,5<n

Let A = (a;;) € E. For i < j, let 0;;(A) = > <5 s and 05,;(A) =
> s<iitsj Ot,s- Define, following [I} 3.5], A" < A if and only if 0;;(A") < 04,;(A)
and 0;;(A") < 0j;(A) forall 1 < i< j<n Put A < Aif A 5 A and, for
some pair (4,7) with ¢ < j, either o, ;(A") < 0;;(A) or 0j,;(A") < 0;,:(A). Since
deg At = 3" oi41(A), and deg A~ = 32" 0341.4(A), the lemma below holds.

5The degree function here differs from the ¥ function [I, p.668]. But, it plays a similar role
for induction; see 14l
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Lemma 3.2. If A’ 5 A, then deg(A’) < deg(A).

Note that A" < A does not necessarily imply that deg(A’) < deg(A).
For A € =+ and j € Z", let

M(AS) — E(A+) 0(j) - F(Af),

where
EAh) _ H E}(Lai,j) and FA7) — H F}(Lai’j)-

1<i<h<j<n 1<j<h<i<n

The orders in which the products EMA) and F(A7) are taken are defined as follows:
For the jth column (reading upwards) aj_1j,---,a1,; (2 < j < n) of AT, fix the
following reduced expression for the longest word wy ; of &;:

wo,j = Sj—1(Sj—25j—1)(Sj_3Sj—25j—1) - (s152---Sj_1)
(3.2.1) J J j—25; j—35j-25; J
= (sj—181)(85-1 - 82) -+ (8j-18j-2)sj—1

Here (and later), s; = (4,4 + 1) for 1 < i < j. Pufl

M, = Mj(A+) _ Ej(_lijl—l,j)(Ej(_liyé—z,j)Ej(_tijl—z,j)) .. (E;al’j)Eé‘“*j) e E](,‘“ij)),

Similarly, for the jth row (reading to the right) a;1,--- ,a;j;-1 (2<j<n)of A7,
put

M = (F§aj,1) o FQ(aj’l)Fl(aj’l)) o (Fj(igij—z)F_(fjéj—z))Fj(ajl,j—l) = Q(M;(A))

J Jj—1 J

(cf. (L)), where A’ = (A~)T is the transpose of A~. Then we have E(A1") =
M,M, 1My and FA) = MyM}--- M. Clearly, deg EA") = deg(AT) and
deg F(47) = deg(A™). The following result is also essentially proved in [I].

Proposition 3.3. The set
M={MA) | Ac=* jer}

forms a basis for U. For A € =*,j € Z", there exist a € Z, fy p,gi.c € Q(v)

such that
(331) M(Ar-]) = ’UaA(j) + Z fj’,BB(j,);
j'ez”,BeE*
B<A
(3.3.2) AG) = vTeM@AD) 4 Z gj,,,CM(C,j”x
j"ezr,cest
C<A

In particular, the set {EY qc=r (resp., {FB)Y ge=- ) forms a basis for UT (resp.,
u).
60bserve that changing from the first reduced expression in (3:2-1)) to the second requires only
relations of the form s;s; = s;s;, |¢ — j| > 1. Thus, by definition [2.1] we have
(aj—1,5) (a1,5)\, mlaj—2,5) (a1,5) (az,5) r-(a1,5) )
M; = (Ej‘ijl L), 'Elal J )(EjiJQ 2,97, _E2a1 .. (Ejl?lj Ej‘i12j )Ej‘illJ .

This is the original definition given in [I].
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Proof. For the first assertion, see [I, 5.7]. Next, [1, 5.4(c)ﬂ (and the discussion

following it) implies (33.1), while (83.2)) is obtained by solving (3331 inductively.
The final assertion follows from an argument along the line of that of [I], 5.5] (see
[12, 4.3] for some details). O

The basis M is the monomial basis associated to the given ordering on the wy ;
above.

Corollary 3.4. Let A € =% and let M be any monomial in the E;. Then the prod-
uct ME™ is a (finite) Z-linear combination of EB) with B € =+ and deg(B) <
deg(M) + deg(A). Thus, M itself can be written as a linear combination of E(P)
with B € ET and deg(B) < deg(M). A similar statement holds for the Fi.

Proof. Using [T} 5.4(c)] again, we have
(3.4.1) EW = M0 = A0)+ Y fieB().

jez B'es*
B'<A
The first formula given in [T} 5.3] implies that, if A’ € =*, then Ej, A’(0) is a linear
combination of terms B(0) with B € E*. (The fact that A’ € ET is essential to
guarantee that the summands in [T} 5.3] of the form B(j) with j # 0 «ll have zero
coefficient.) Since E(4) is a product (up to a scalar) of various Ej, = Ej, 4+1(0),
induction shows that the only B’(j) that occur in (3:41) are those with B’ € E*
and j = 0. Therefore, we obtain

(3.4.2) EW =A0)+ > fosB(0).

B'eE+:B'<A
Clearly, if fo 5 # 0, then B’ < A implies deg(B’) < deg(A), by B2 and B’ € =*
as well.

To prove the corollary, we can easily reduce to the special case when M = Ej, for
1 < h <n—1. Applying [I} 5.3, p. 672] again shows that the product E, A(0) (resp.,
EpB’(0)) is a linear combination of B”(0) with B” € Et, deg(B"”) < deg(4) + 1
(resp., deg(B") < deg(B’) +1 < deg(A) + 1). Every B”(0) is a linear combination
of E®) with B € 2, B < B” by BZ42). So EpE™ is a linear combination of
EB) with B € E* and deg(B) < deg(B”) < deg(A) + 1. O

Remark 3.5. We note that the inequalities deg(B) < deg(A) + deg(M) in the
statement of B4l can even be replaced by the equalities deg(B) = deg(A) +deg(M),
using the fact that the relations defining UT are homogeneous and the monomial
basis given in the last assertion of preserves the graded structure on UT. We
thank Fu Qiang for pointing this out.

4. THE ALGEBRA S,
Let X be another indeterminate which is independent of v. For ¢ € N, put
X3 ] = (X = 1)(X =) (X — '),
with [X;0]' = 1 by definition.

"We will make much use of this result, which holds for both U and for U,, in the sequel.
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Definition 4.1. Let S, be the associative algebra over Q(v) generated by the
elements
ei;fiaki (1<Z<n_1)a
subject to the relations:
(a) kik]‘ = kjki;

) [k1;t1) [ko;t2]' - [Kn—15tn—1]' =0 Vt; € Nsuch that ty 4+ +t,_1 =r+1;
( ) ejej = ejei,fifj = f]‘fi (|Z —j| > 1);
(d) efe; — (v+v " ejeje; +ejel =0 (|i—j|=1);

) £22; — (0 + o)L g F £ =0 (i ] = 1);

) kie; = v<0)ek;, ki fj = v~ 0D £ %, with (i, j) as in 2.1(b);

)

—k;
,jU -1

ef; —fje; = 6;
v”"kll---knil.

where k; = kik; [, 1 < i <n—1, with k,, =

Since [k;;t;]' = 0 if t; = r + 1, each k; is invertible and k;l is a polynomial of k;
of degree ; so the definitions of k; and k,, make sense. Also, 4.1(f) holds for i = n.
By 2.1, there is a surjective homomorphism U — S, in which E; — e;, F; — f;
and K; — k;. In particular, for A € 2%, let e(A) be the image of E(Y) under this
homomorphlsm with a similar convention for £(4), A € 2. The relations in
hold with F;, F;, K; replaced by e;, f;,k;, respectlvely. The definition implies the
following result.

Lemma 4.2. (1) There is a unique Q(v)-algebra anti-automorphisnll T on S,
satisfying

T(e;) =f;, 7(£f;) =es, 7(ki) =k;.
(2) There is a unique Q(v)-algebra anti-automorphism v on S, satisfying
v(ei) =en—is V(&) =fn—is Y(ki) =kn—iy1-
(8) There is a unique Q-algebra involution = on S, satisfying
gi=e;, fi=1%f, k=k"' o=uv"
Proposition 4.3. Lett = (t1,--- ,t,) € N® and put [t| =t1 +---+t,. Then
[k;t] := [kis 1) [ko; ta) - [Kn;tn]' =0 whenever |t| = r + 1.
In particular, [k,;r +1]' = 0.

Proof. 1f t, = 0, the result holds by 4b). So assume ¢, > 1. Then

[knstn]' = =0 Tyt ket [kt — 1]’(k1 kg — 0"
= vl etk Zv“* o (ke — 0" )k Koot
(Observe the above sum is telescoping.) Putting a; = —vt+ Hi-ittn1—lg 1.,
k; !,
n—1
kit] = D ailkista]' (ki ti + 10+ [kno15tn1] Kns tn — 1] =0,

i=1

8The composition of this isomorphism and the bar involution ~ below is the “little” version of
the map Q defined in (ZIT).
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by induction on t,. O

Remarks 4.4. (1) provides a connection between the presentation Bl and that
given in [§]. Let SY be the commutative subalgebra of S,. generated by ki, -+ , k,,_1.
By E.7] below, the relations [£1)(a),(b) provide a presentation for SY. However, by
and 6] below, S¥ can also be described differently, taking generators ki, - , kj,
satisfying the relations k;k; = kjk;, [ki;r +1]' = 0, and k; -k, = v"; see [8
Prop. 7.4]. This gives another presentation of S, replacing ki,--- ,k,_1 by new
generators ki, - -+ ,k, and replacing the relations @l(a),(b) by those above. This
presentation is studied in [8]; it has fewer relations than 3] but one more generator
k,, and the relations involving k.

(2) To justify the relations for SY, let L,()\) be the irreducible type 1 U-module
with highest weight A, where \ is a partition of r with at most n parts. Suppose
Uy € Ly(N),, the p-weight space of Ly(A). Then p € N*, |u| = r, p < X (the
dominance order—see below the proof of Prop. dH) and K;u, = v*iu,. Thus,

n n

[TEsti] v, = [ l0" 5 ti] .
i=1 i=1
Since [[j_, [v*;t;]' = 0 whenever t; + - +t, = 7+ 1, L,(\) naturally becomes an
S,-module.
By definition, for t = (t1,--- ,t,) € N* and A € E| e(Aﬂ,f(“r) are the images

of E(A+), F(Af), respectively, under the epimorphism U — S,.. Thus,
e(A+) _ H eglai,j), (A7) _ H fglaw-),

1<i<h<j<n 1<j<h<is<n
1 [ki50
_ 13
ke = H [ i ] .
i=1
Here the order in the products is the same as the order used for EA) and F(A7)
in §3. The next result is a direct consequence of the defining relations on the k; (cf.
18, 7.4(c), 7.6(a)]).
Lemma 4.5. Let t = (t1,--- ,t,) € N*. Then:
(1) k¢ =0 3f |t| > 7.
(2) If [t| =7, then kike = vike; in particular, [*i¢ ke = [17F] ke.
Proof. To see (1), observe that

t: VS — =S o VS — =S ’
¢ s=1 s=1

. ti oo sl —1 +s—1 Li 0 =1 —s4+1(1,2 _ ,2(s—1)
{ki,O} B Hklv kv B Hki v (k? — v )
so that [k, t;] is a factor of [%] for every i. Thus, B3 implies (1). If [t| = r,
(1) implies that (k; — v')k¢ = 0, proving the first (and hence the last) assertion in
(2). O

The subalgebra S? of S, generated by the k; is a quotient of U°. Let

Aln,r)={t |t e N" |t| =7}
be the set of compositions of 7, and let > be the dominance partial ordering on
Aln,r): A <= Y7 N =57 1, V4. We have the following result (cf. [8]
7.4(b)]).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MONOMIAL BASES FOR ¢-SCHUR ALGEBRAS 1603

Corollary 4.6. The algebra S® is a commutative semisimple algebra over Q(v).
The set {kx}xea(n,r) 15 a complete set of primitive orthogonal idempotents (hence
a basis) for SU. In particular, the identity element 1 € S, has the form 1 =

Z/\EA(n,r) kx.

Proof. Let AT be the partition obtained by permuting the components of A\ €
A(n,r). By[£4(2), ky acts on L,(AT)x # 0 as an identity operator. Hence, k) # 0.
By [45(2), ka\k, = 0.k for all A\, € A(n,r); so the k) are nonzero orthogo-
nal idempotents. The relations given in 1] imply that the #A(n,r) monomials
k{l .- ~kil"_‘f in the k; of total degree at most 7 span S. Thus, by dimension con-
siderations, the linearly independent elements ky, A € A(n,r), must be a basis for
SY. The corollary now follows. O

A dimension comparison gives rise to other bases for SU; e.g., part (1) of the
corollary below follows from the proof above.

Corollary 4.7. (1) The elements k{l o ~kzl"f11 (Gi €N, j1+ -+ jno1 < 1) form
a basis for SU.
(2) For any A € A(n,r), let

o o KU 0] (k20 kn-150
Al M Ao An—1 |’
Then the set {k\}xe(n,ry forms a basis for S9.

Proof. We prove (2). For \,u € A(n,r), write A < p < \; < py, for all i =
1,2,---,n—1.Set A < pif also \; < p; for some i. By 5 kjky #0 <= p <A

So .6 implies
n—1
(4.7.1) K, = Z K ky =k, + Z H [Z] k).
AEA(n,r), <A AEA(n,7),u< A i=1
Now the assertion (2) follows easily. O

For A € Z and 1 < i < n, define

0i(A) = a;; + Z (aij +aj.), oi(A) =a;;+ Z (as; +aj0).
1<j<i 52,
Then
21
#{A) | A€ An, 1), A€ EX N > 0i(A) Vi) = (T+n )

r

To see this, put a;; = A; — 0;(A). Then the cardinality above is the number of
matrices (a;;) € Z such that }, ;a;; = r. The identity holds if o; is replaced by

/
Iz

The next result was observed in [[7] 4.6] and generalized in [8, 7.9]. For 1 <4 <
n—1, let

ag

ai:(07"' 7051,7_1705"' 50)
i

Lemma 4.8. Let A € A(n,r).
(1) ]f )\i+1 2 ]., then eik)\ = k)\Jraiei,
(2) ]f )\i 2 ]., then fik)\ = k)\faifi-
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Proof. Formula (2) results by applying the anti-automorphism 7 given in E2[1) to
(1). We prove (1). By [Z3I(5), we have

ki: 0] [k;; —1] [kiyq1;1
ek = 79 } [ 1y [ i+15 ]ei~
A j;é]z;'[Jrl [ /\j i | Ait1
Multiplying on the left by [kil‘o] and applying 23(1),(5) and EEH(2) gives
A7,+1 ) o A7,+1 kj;O_ ki;O ki—i—l;l )
[ 1 ]elkA{ 1 ]H [Aj Xo+1) | A |5
JFi,i+1 -

By 23(4) and @, (1) follows after cancelling [ ] O

Recall the sequence ro(A) (resp., co(A)) of row (resp., column) sums of A defined
in §2.
Corollary 4.9. Let A € =+ and X € A(n, 7).

(1) If \i = 0y(AT), 1 < i < n, then ek, = kA/e(A+), where N = \ —
co(AT) + ro(AT).
(2) If \i = 04(A7), 1 < i < n, then knf) = £ )k, where N/ = X\ +
co(A™) —ro(A7).
In these cases, we have X > X\ and N > \.
Proof. If i <janda <\ foralll=i+1,---,j, by[d8]
(6 - Jn = (el -0y,
where 1 = A+ a(a; + - -+ + @j_1). Now assume that \; > o;(A™) for all 7. Since
e(1") is a product of terms el(.ai’j) e eyzj’lj), we obtain that e k) = kye(4") for
N =X+ aij(ei+ -+ aj_1), that is,
M=M+a2+ - +a,
)\/2 =X —ai2+a3+--+az,,
(4.9.1) Ny =X3 — (a13+ass)+asa+- +asn,
)\%_1 =M1 — (al,n—l +---+ an—Q,n—l) + Gn—1,n,
N,o=Xp— (a1n+ + an-1n),
yielding the required formula. Applying 7 in 2] to the identity in (1) gives that in

(2). The last assertion follows easily from the definition. O

For part (1) of the following result, see also [§, 7.9].

Lemma 4.10. Let A € A(n, 7).
(1) If \it+1 =0 for some 1 < i< n—1, then e;ky =kyf; = 0.
(2) More generally, if A € ET (resp., A € E~ ) and \; < 0;(A) for some i, then
eky =0 (resp., kxf) =0).

Proof. 1t suffices to prove (1) for e; and (2) for A € Z7; the others can be obtained
by applying the anti-automorphism 7, since 7(e(4)) = f (A" if AT is the transpose
of Ae =T,
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To prove (1), assume \;41 = 0. By Bl and E5(2), k;11eiky = v le;ky. Also,
T and L6l imply that e;ky is a Q(v)-linear combination of terms k,e;, u € A(n,r).
Since ki1kye; = vtk e; and w1 > 0, it follows that e;ky = 0.

To prove (2), let 4 be minimal with A; < 0;(A). Then ¢ > 1, since 01(A) = 0.
Suppose a1 + -+ ay_1; < Ny < a1+ - +ay,; for some 1 <4’ <i—1. Write
[a,,

] e4) = mymy, where

_ e(an—l,n)' 'ez(fL i—) (z) (ay_1;) (‘ai’—l,i) . (a;r_1,3) . e§a1,2)

m =e, ey ;o M2 =€, 7€y 1 "~ €y |
and x = \; — (a1; + -+ +ay_1;). By Ed and B8 [*7]eMk) = mk,my, where
= (p1, -, pn) € An,r) with p; = (A\s —a1; — -+ —ay—1,) —x = 0. Now, since
a;r; —x > 0, we have mk, = mje;_1k, = 0 by part (1), and ek, =0. O

Let S;© (resp., S;) be the subalgebra of S, generated by the e; (resp., £;). Using
PBW bases, [14] 2.5] gives a version of the following result; see also §6 below.

Corollary 4.11. The algebra S} (resp., S, ) is spanned by the elements
{eW:Aeczt 0(A)<r} (resp, {tW:Aec =7 0(A) <r}).

Proof. If 0(AT) = 3, 0:(AT) > r, then e = D oNeA(n,r) ek, = 0 by @6 and
ET0(2). The result follows since S;t is spanned by all e(4) with A € E+, o(A) < r,
by B.3. O

For A = (ai,j) € Z, let bi,j = Qpn—j+1,n—itl- So TA = (b@j) is the matrix
obtained by transposing A along its skew-diagonal. Thus, o/(TA) = 0,,_i11(A).
The following result is an application of the anti-automorphism ~ in 2(2). Part
(1) is a special case of [8] 7.9].

Corollary 4.12. Let A € A(n,r).

(1) If Xy =0 for some i with 1 < i< n—1, then kye; = £;k) = 0.

(2) More generally, if A€ ET (resp., A € 2~ ) and \; < o(A) for some i, then

kxy(e(TA)) =0 (resp., 7(£( Mk, = 0).

Proof. Define \°P = (AP, - -+, A%) by reversing the components of A = (A1, -+, \y,)
(e, AP = X—it1). Then, v(ky) = kaor, and (1) follows easily from LI0(1). Since
X < l(A) means A%, < 0y (TA), by EIN2), e Vkyor = 0 = Kpor 4.
Now apply 7. O

The elements 'y(e(TA+)) and 'y(f(TA_)) can be explicitly described as follows: for
the jth row (reading to the left) a;,, - ,a;j+1 (1 <j<n—1)of A", put

n; = (eg,“iv")eg,‘j:vl") ceelan)y (eg-aj'j“)eg(jff“))e;aj’j“).
Similarly, for the j-th column (reading downwards) a;+1 4, ,an,; of A, put

n) = £l (@20 g as20)y (g lang)glang) L glans))

Then 'y(e(TA+)) =n,_10,_2---n; and 'y(f(TAi)) =njn}---n),_;.

The following is the “little” version of 4] from which it follows.

Lemma 4.13. Let A = (a;;) € E" and let m € S, be any monomial in the e;.
Then the product me') is a linear combination of eP) with B € =+ (and hence, of
Pk, with A € A(n,r), B € ZF), and deg(B) < deg(m) + deg(A). In particular,
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m itself can be written as a linear combination of e Bky with A € A(n,r), B € =
and deg(B) < deg(m). A similar result holds for the negative part of the algebra.

For any A € Z% and A € A(n,r), let
(4.13.1) n(AA) = (A g, £(47),

By B3] and @10(2), S, is spanned by all such m*Y with A\ € A(n,7), and
A € EF satisfying o(A1) <7 and 6(A7) < 7.

Theorem 4.14. For A = (a; ;) € E,, let

n
n(d) — H egl‘“ﬂ‘) H [k;\’lo] H fglai,j) - e(A+)k/\f(A7)7

1<i<h<j<n i=1 1<j<h<i<n

where X = M(A) = (01(A), -+ ,0,(A)). The set M = {m}ac=, is a spanning set
for S,.

Proof. Fix B € =% satisfying o(BT) < 7 and o(B~) < 7. Let A € A(n,r). If
i > 0;(B) for all 4, then there is a unique A € Z, such that (4 = n(B),
Therefore, to prove the theorem, we must show that if \; < 0;(B) for some 4, then
m(ZN lies in the span of 9. We proceed by induction on deg(B); cf. (3I1). The
result follows from B0 if deg(B) = 1. Assume now that deg(B) > 1, and suppose
i is minimal with A; < 0;(B). Let B; be the submatrix of B consisting of the first

i rows and columns, and write e®") =mje(B) and £B7) = £(B)n/. Then
BN — oD £ By

By EI0(2), we can assume \; > 0;(B") (and so \; > o;(B™) for all 1 < j < by
the minimality assumption on ¢). Now FZ9(1) implies

n(BA = m1(e(Bj)k,\)f(B;)m'1 = mlk,\/e(Bj)f(Bf)mll,

where \ = ()\/1, D\ ) with )\; =\ — (al,i + -4 ai,l,i) =\ — (Tl(B:_) > 0; cf.

r'n

the last equation in (@9.0). By remarks after 2.3,
BB Z g(BDG(BD) 4

where f is a linear combination of monomials m$h;m? with h; € S? and deg(m$m?) <
deg(B;). Here, m$ (resp., mf) denotes a monomial in the e; (resp., £;). Thus,
deg(mmémim}) < deg(B). Since \; < 0y(B; ), mky£B)eBD) = 0 by EI0. By
A.13, mym$ (resp., mfm} ) is a linear combination of e@kyr, C € 2t (resp., £(kyr,
C" € E7) with deg(C) < deg(mm$) (resp., deg(C’) < deg(mim;)). Thus, each
mikym$hymim) (= mim$kyvhjmim} ) is a linear combination of n®"#) with deg(B') <
deg(B), since deg(mjm$mim}) < deg(B). By induction, n(PA) is in the span of
Mm. O

Note that all elements in 9 are fixed under the involution ~ defined in E2(3).
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5. THE ISOMORPHISM BETWEEN S, AND U,
Recall from BI)3) the surjective algebra homomorphism ¢, : U — U,.. Since

Gr(Ki) = ¢+ (0(es)) = O(ei, 7) = > v (D],

De=?
D=diag(d1, " ,dn)

where e; = (0,--- ,O,%,O,--- ,0), and since [D][D'] = dp p/[D], we obtain the
following.
Lemma 5.1. We have CT(KlKQ oK) ="l
Forany ¢,7,1 <i<n,0<j <7, let
m(j) - Y
DeEY,d;=j

s0 Gr(Ki) = 3270 v0i ().
Lemma 5.2. For any t € N, let

K(t) = [Ki;t1] [Kasto] -+ [Knitn]'.
Then (-(K(t)) = 0 whenever [t| > 7.
Proof. Since ¢ (K; —v?) =37 (v —v?)0;(j;), we have

GUEt]) = 30 = D — o)+ (0 — o i) = 37 [ @ — i),
Ji=0 ji=t; 1=0

Thus, if |t| > r, the fact that j; + -+ jn, = t1 + -+ + t, > r implies

n t;—1
GE®)= Y (HHU%— )m(.m (i) = 0,

JiZti,gn2t, \i=1 =0
since 01(71)02(J2) - - - 05 (Jn) = 0, whenever j1 + jo + -+ + jn > 1. O
The following has already been obtained in [14] 2.10] using [9} (3.4.a)].

Corollary 5.3. For anyt € N, let Ky = H?zl [Kto} Then

0, if |t] >,
G =4 e
[dlag(tlv T ;tn)]v if |t| =T
Proof. The case for |t| > r follows from 2. If |t| =7, [d, (3.4.a)] implies that

T

¢ [Kt 0] -y M JIEDS M %)

Ji=0 Ji=ti

since or 0 < j <t. Thus,

n

Kz,O .
(H >_ S T[]

=1 J12t1, o gn 2ty i=1
If 01(j1) - 0n(jn) # O here, then j; = t;,Vi. Since 01(t1)02(t2) - 0n(tn) =
[dlag(tl, )] the result follows. O

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1608 JIE DU AND BRIAN PARSHALL

Note that we actually have 91 (j1)02(j2) - - - 0n—1(jn—1) = [diag(j1, - - - ,jn)], where
Jn=1—(j1+j2+ -+ jn_1). Thus, the proof above also shows that, for t € N*~1

with [t| < 7,
n—1 —
K;;0 .
Cr <H |: _Z :|> = Z H |: :|01 ,71 anfl(jnfl)
i=1 L J1Zta, a1 2t 1 i=1
Z H |: :| Cr K)\
AeA(n,r) =1

t<N
yielding the U, version of EE7.11.

Theorem 5.4. The algebra homomorphism G- U — U, induces an isomorphism
S, 2 U,. Moreover, the set M given in[{.17) forms a basis for S,.

Proof. By Bl and B.2}) ¢, induces a surjection ¢ : S, — U,. But EI4 implies
dim S, < #IM = dim U,; so (, is an isomorphism. O

We call 9t a monomial basis for S,.. Using the isomorphism S, = U,., we identify
the generators e;, etc. with E; ;+1(0,r), etc. By B3,

(5.4.1) ky = [diag(N)] := [diag(A1, -+, An)], VA € A(n, 7).

Using [I 5.4], we can identify the elements (mEp p4+1)(0,7) with egm), and the
elements (mEp41,4)(0,7) with fglm).

Recall the Bruhat ordering on E,. [1), 1.4]: Fix an algebraically closed field &, and
let V' be an r-dimensional vector space over k. As shown in [ 1.1], the matrices
A € E, correspond bijectively to GL(V)-orbits O4 of pairs of n-step filtrations of
V. Then, given A’, A” € Z,, A’ < A" means O C O4». Here O denotes the
Zariski closure of Q4. This partial ordering is independent of the algebraically
closed field k.

We have the following identification of the monomial basis elements.

Theorem 5.5. For any A € Z,, nY is ezactly the element defined in [T, 3.9(a)].
In particular, in U, we have

(5.5.1) n ) =[Al+ > fpalB] (foac€2)
BEE,,B<A
Proof. By T4 and 9]
nd — e(A+)k)\f(A_) _ k)\/e(A+)f(A_) _ e(A+)f(A_)k)\u,
with ' = X — co(A") +r0(A") and X" = A+ co(A™) —ro(A™). Since A = \(A4) =
(01(A), -+ ,0n(A)), N = ro(A) and X = co(A). Recall that e4™) (resp. £4))isa

)
product of eglai’j) (resp. f(a’ J)) foralll<i<h<j<n(resp. 1<j<h<i<n),
which are ordered as in [1 3. 9( )] (cf. §3 and footnote 6 above). If v € A(n,r) and

D = diag(v) are such that e, (@0i)y, # 0 then, by B3,

egai,j)ky = (@i ;En,nt1)(0,7)[D] = [ai ; Eppy1 + D'

for a unique D’ € =

o with co(a; jEp pt1 + D') = v. A similar statement holds for

any fﬁla"’j)ku. Thus, applying this and 4.9 (noting also that k? = k,) repeatedly

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MONOMIAL BASES FOR ¢-SCHUR ALGEBRAS 1609

5:1_"1"’1)1{ A, where f gaf’l”’l) is the rightmost term

from right to left beginning with £
of A7) we identify m(*) with a product

P = H [Dinj + aijEnpy1] X H [Dinj + aijEnyan]

Iish<jsn 1<j<h<i<n

Here the order of the factors follows that for e(4") and £ (A7) and the diagonal

matrices D;; ; € E° are inductively and uniquely determined by the conditions

co(Dpn—1.n-1+ ann-1Enn—1) = X" = co(A) (cf. B4T) and co(X) = ro(Y) if [X],
[Y] are two adjacent terms in P. However, P is identified in [1], 3.9(a)] as equaling
an expression of the form given on the right-hand side of (E5.1)). O

The following result will use the relation < on = defined above B2, Observe
that < does not involve diagonal entries: given A, B € =, put A* = At + A~ and
BT = BT + B~. Then A x B <= A* < B*. In addition, [1} 3.6] states that
for ABeZ,, A< B = A< Band A< B = A < B. (For more results on
these various poset structures, see [12] §5].)

Corollary 5.6. Suppose m(4N £ 0 for some A € Z* and X\ € A(n,r). If there
exists D € 20 such that co(A+ D) = X\ + co(A™) —ro(A™), then m(AA) = n(A+D),
Otherwise,

(5.6.1) nAN = N fpan® (fpa € Qv)).

BEE,,B<A

Proof. 1f co(A+D) = A+co(A~)—ro(A~) for some D € Z°, then A = A\(A+ D), and
the first assertion follows from the definition. Now suppose that no such D € Z°
exists. By 14 and [0} m(») = e (A )k, with A = A + co(A™) — ro(A™).
By [1 5.4(c)],

WU = A+ YD friaBGr)
jen",Besk,
B<A
for fp ;4 € Q(v), where Ezr ={A € =% | o(A) < r}. By G40, [diag(\")] = kv,
and so A(0,7)kys = 0, since there is no D € Z° satisfying co(A+ D) = A+co(A™) —
ro(A~). Therefore, nAY = 3 fp ¢ 4B(j,r)kxs. But by (AI) and @GOI) (see
also B03)), B(j,r)ka is equal either to 0 or to v*[B + D] for some a € N and
some D € Z°. The corollary now follows from (E5.1]), using the fact, discussed
above, that A< B — A < B. O

Another monomial basis for S, results by replacing the divided powers el(.a) by
the ordinary powers ef. Also, if the ky in 9 are replaced by the k) defined in
4.7(2), then we obtain a new monomial basis. Monomial bases can be obtained
by applying the anti-automorphism 7 defined in [£.2]to the known monomial bases.
However, we next show that 91 is an integral basis.

6. INTEGRAL FORMS AND PBW BASES

Recall from §2 the various Z-integral forms UT, U~ and U°. These subalgebras
are all free over Z; see for a basis of UY. For Ut and U~, the so-called PBW
bases are described as follows. Given a reduced expression wg = s;,;, - - - s;, for

v
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the longest word wg of &, let i = (i1,42, -+ ,i,). For any ¢ = (¢, ,¢,) € N¥,
define

7 Tv—1 iy

where the T} are the braid group actions on U [I8, 1.3]. Then {Ef}cenv is a Z-basis
for Ut. Let F¢ = Q(Ef) (cf. [18, 1.3(d)] and @211)); so {FF}een is a Z-basis for
Uu-.

In [19, 7.8], Lusztig established a relation between the monomial basis given in
and a PBW basis. To describe this, we choose the following reduced expression

(see B21)):

Wo = 84, Siy*+ Siy, = (Sn—1Sn—2- - 51)(Sn—1Sn—2- - 52) - (Sp—18p—2)Sn—1.
Soi=(mn-1,---,2,1,--- ,n—1,n—2,n—1). Let ay,- -+ ,a,—1 be the standard
list of simple roots of type A,,_1, and put f1 = a,—1 and B = s;, 84, +* -+ Sip_, (@i ).
Then, ordering from left to right down successive rows, we have the following listing
of the positive roots:

{61)"' 761/} = {an—laan—l +04n—2 ’ oy Q1 + "'—f—Oél,
On—2,0p—2+ Qp_3, " ,Qp_2+ -+ g,
g, Q2 + aq,
al}.

Write By = E;:ll pjra;, and define x; : NV — N*~1 by

c=(c1,¢2, -+ ,¢) —xi(c) =d=(di, - ,dn—1), whered; = ijkck.
k=1

Clearly, xi(c’+¢”) = xi(c') +xi(c”). Order the fibre x; *(d) of x; over d by setting
¢ <gim ¢’ <= dim O < dimO,,

where O, denotes the orbit of the quiver representation defined by ¢ (see [19, p.
463]).

Given ¢ € N”, define, for 1 < k < v, ¢ € N” such that the entry in the k-th
position is ¢, and 0 otherwise. (Thus, ¢ = >";_; cx.) Put d* = yi(cy), and define

k k
E((c)) = E(dY)E(d?) - E(d”), where B(d") = E{W g ... g1,

Define a bijection x : NV — E* by sending ¢ to Al = (a; ;) so that the first n — 1
components of ¢ become the n-th column reading upwards, and the next n — 2
components become the (n — 1)-th column, and so on, i.e.,

Cl =0Qn—-1,n, """ ,Cn—1 = A1,n—1,Cn = An—2,n—1,""" ,

and define k= : NY — = similarly. Then we have E(4¢) = E((c)). Define
Fe) = F((c)) = Q(E((c))).
The following resultf] appears in [19] 7.8(b)].

9This version is the result of applying the graph automorphism F; — E,_;;1 to Lusztig’s
version.
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Lemma 6.1. Leti=(n—1,---,2,1,--- ,n—1,n—2,n—1) and let c € N”. For
any ¢’ € NY, there exists he o € Z such that

(6.1.1) E((c)) = Ef + > he.e EY
c'exi(d)ie’ <dime
where d = xi(c). A similar result holds for F((c)).
Remarks 6.2. (1) Using the language of quiver representations, d = x;i(c) is the
dimension vector of the quiver representation V. corresponding to ¢ (see [19] 4.15]).

Thus, ¢’ € x; 1(d) simply means that V. and V. have the same dimension vector.
(2) By [, 7.3(10)] and the remark [4, 7.4], (6.1.1]) may be written

E((c)) = Ef + > heo EY = Bf + > he.o BY
¢Ex; ! (d):0u COe c'ex; (d): Al <ad

where O is the Zariski closure of Oc. Here we have used the fact, given in [2] 3.2]
(see [12, 5.4] for details), that O ; O, implies A, < AF.

Corollary 6.3. The set {E} qc=t (resp., {FB)Ype=—) forms a basis for Ut
(resp., U™ ).

By [9], U, = ¢-(U) is an integral Z-form of U,., generated by [D], (mEh n+1)(0,7)
and (mEp41.4)(0,7) with D € 20, m € N.

Theorem 6.4. The Z-subalgebra U, is isomorphic to the subalgebra of S,. generated
over Z by el(.m), fgm) meZ,1<i<n—1)andky (A € A(n,r)). Moreover, the
set M defined in [f.17) forms a Z-basis for U,. (It is called the monomial basis for

Uy.)
Proof. Since {[A]} aez, forms a Z-basis for U,, it follows from BH that 9 forms a
Z-basis of U,.. The first assertion follows as well. O

Recall from €14 that, for any A € Z,, A(A) = (01(4), -+ ,0,(A)). By E?2)
and its proof, we have another integral basis for U,..

Corollary 6.5. The set
M = {eUK) £ ) | Az}
forms a Z-basis for U,.
Let ef = (.(Ef) and £§ = (.(FF). For any A € E,, let ¢(AT) € N” (resp.,

c(A™) € N) correspond to AT (resp., A~) under the bijection  (resp., K~ ) above.
We now obtain the PBW-basis for U,..

Theorem 6.6. Leti=(n—1,---,2,1,--- ,n—1,n—2n—1). Then the set
c(At c(A™ —_
%i = {ei( )k/\(A)fi( ) | Ae :r}
forms a Z-basis for U,.

Proof. Usingl6.1land noting[£.1Tland[6.3] we may write eiC(A+) = (") tlower terms

and ff(Ai) = £(47) tlower terms. Here the lower terms are relative to < by B2(2).

By[64l the coefficients fp, 4 in B8 must lie in Z. So (6] gives

c(AT c(A™ .
ei(A )k)\(A)fi(A ) =0 + lower terms (relative to ).
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Now the assertion follows from [6.4] O
Corollary 6.7. Maintain the notation used above. The set

1

c(At c(A™ —_
B = {ef4 e £ (A€ 2,

forms a Z-basis for U,.

7. THE TRANSFER MAPS U, 4, — U,

We define epimorphisms U+, — U,; these are the “transfer maps” in [2I]. Let
k;, e; and f; denote the generators for U, ;.. Denote the monomial basis for U,

by {m(A)}AeEnM-

Proposition 7.1. There is a unique algebra epimorphism
Y =Ypiryr: Upyr - Uy

satisfying ¥(k;) = vk, ¥(e;) = e; and Y(f;) = £;.

Proof. Tt follows directly that v preserves the relations for k;, e; and f;. O

The maps ¢4+, agree with the maps ¢p4r,r, described (for both finite and affine
cases) in [20}, 9.1]. The existence of ¢y, is proved in [21), 1.10] (cf. [10, 5.4(a)] for
a dual treatment in the GL,, case). Our next result shows that 90t shares a similar
property with the canonical basis under the transfer maps. See the conjecture [20]
9.2] and a proof in [22].

Corollary 7.2. The map 1 induces an epimorphism ¢ : Upyr — U,.. More pre-
cisely,

A—1I, ; _ =
w(m(A)) — m( )7 ZfA In € =,
0, otherwise.

Here I, denotes the n x n identity matrix.

Proof. We first observe that, if A\; > 1, then

[vki;O] vk — v k! [ k;; 0 ]

Ai vd —pA A =1

Let 1 =(1,---,1) € N*. Forany A € A(n,n+7r),if A—1 € A(n,r), then \; > 1
for all i and, by [£H(2),

n

vika) =]

i=1

vk — v*lki—lk .
T o fBa-1 = Kx-1.
vhi — =i

If \—1 & A(n,r), then we have clearly ¥(ky) =k, with |g| =n—+r —z > r, where

x is the number of ¢ with A\; = 0. Therefore, ¥(ky) = 0. The rest of the proof is
clear. 0
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8. PRESENTATIONS FOR BOREL SUBALGEBRAS
For positive integers n and r, the symmetric group &, acts on the set
I=Z(n,r):={(1, - ,ir) | 1 <i; <n}

by place permutations, and then acts on Z x Z diagonally.
There is a bijection between =, and the set of all G,.-orbits in Z x Z defined as
follows: If A = (a; ;) € E, with A =ro(A), we let

iA:(17"'515"'5n7"')n) and jA:(j17"'ajn)7
—— ——
A1 times Apn times
where j;, = (1,---,1,-+- ,;n,---,n). The map sending A to the orbit containing
—— ——
a;,1 times a;,n times
(ia,ja) is a bijection.
We order Z by setting i < j if and only if 41 < j1,...,4r < jr. Clearly, A € =,

with A= =0 <= 1is < ja. It is known (see, e.g., [13, 1.3.3,5.6.1]) that the
subspace UZ? (resp., US?) spanned by all [A] where A € =, with A~ = 0 (resp.,
A* = 0) is a subalgebra, called a Borel subalgebra. Clearly, we have the following
dimension formula:

dim U?° = dim US? = (T‘L( : ) 1) - ¥ H(A’;F_Zl 1).

AeA(n,r)i=1
We now can state the following.

Theorem 8.1. The subalgebra UZ° is isomorphic to the algebra B with generators

ei, ki, (1 <14,j <n—1), subject to the following relations:

) kikj = kjki,'

) [kt kst - [kno1itna]' = 0,V € Noty 4ty =7+ 1

) eiej =eje; (|i—j|>1);

) eZe; — (v+v1)eseje; +eje? =0 when |i — j| = 1;

) kie; = v e k;, where €(i,i) = 1, (i + 1,i) = —1 and €(i,j) = 0, other-
wise.

A similar result holds for USO.

Proof. Identifying U, with S, it is clear that UZY is generated by the e;, 1 <i < n,
and the kx, A € A(n,r). Using[5.H, UZ° has a basis consisting of terms e(‘4+)l<)\7
with A € A(n,7), and \; > 0;(A™), Vi. Temporarily denote the generators of B by

e}, k. Because [LI0K2) clearly holds for the algebra B, it is obviously spanned by

elements e’A")x/, with AT, etc., satisfying the same conditions for the basis vectors
A

ek » of U2, Hence, the natural algebra surjection B — UZ? is an isomorphism
by dimension considerations. O

Let UZ° (resp., US?) be the Z-subalgebra of U, generated by the egm) (resp.,
fgm)), k) with m € N, X € A(n,r).

Corollary 8.2. The set of all ek, (resp., kxfY ), where A € Et (resp., A €
E7), A € A(n,r) satisfying \; > 0i(A), Vi, forms a Z-basis for UZ° (resp., USC).

We have a further decomposition for U,, UZ° and US®. Let U} (resp., U7,
U?) be the Z-subalgebras of U, generated by the egm) (resp., fgm), k). Note that
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U ®z Q(v) = UY = S% A PBW basis version of the following is obtained in [T4]
2.5-6].

Theorem 8.3. The algebra U,t (resp., U, ) is Z-free with basis
{eW A=t 0(A) <r} (resp,{tW | Aec=,0(4) <r}).

Hence, dimS;} = dimS; = (N:T), where N = @ Moreover, we have
triangular decompositions:
U. =000, Uz°=USU° and US® =UU,".
Proof. By [411] the two sets span U} and U,”, respectively. The linear indepen-
dence is seen easily from B2 by writing e(4) = ZA:)\QW(A) ek, O

Note that, by @IZ the multiplication map from U,m @ U’ ®@U,~ to U, is no longer
injective. Thus, there is no tensor product triangular decomposition in this case.

9. IDENTIFYING THE MONOMIAL BASIS IN H

In this section, assume that n = r for simplicity; all results below are still valid

for r < n. Let

w=(1,1,---,1) € A(n,n),

and let H = k,U,k, and H = k,U,k,. By (@ZI), k, = [I,], where I, is the
n X n identity matrix. It is well known (see, e.g., [6]) that H is isomorphic to the
Hecke algebra defined in ([COl). However, in this section, we will not assume this
identification, but rederive it from the monomial basis theory for ¢g-Schur algebras.
At a deeper and more interesting level, explicitly identifies a basis 901, C 997 of
H C U,, as a monomial basis involving certain monomials in the Kazhdan-Lusztig
elements C?; see [9.6]2).

For w € &,,, the permutation matrix A,, € =, is defined inductively by setting
Ay = AyA,, where w = ys with y < w and s = (4,7 + 1) for some i. Writing
n(4w) = (A, £(A0) as in @14 E0limplies that e(Ai)ky = k,e(Aw) and kyf(Aa) =
fAwk,; so mAw) € H.

Proposition 9.1. The algebra H is free over Z with basis M, = {n4+) | w € &,,}.

Proof. For A € 2, if k,[Alk, # 0, then ro(A) = co(A) = w. So A is necessarily
a permutation matrix. Thus, M, C k,Mk,. By EH if A is not a permutation
matrix and k,mk,, # 0, then k,mAk,, is a linear combination of the elements of
IM,,. Therefore, M, forms a basis for H. O

We record the following simple commutation relations.

Lemma 9.2. Let m be a monomial in the £;. For any 1 < i< n—2, let 9;(m) =
2deg;(m) — deg; ;(m) — deg, ,;(m), where deg; denotes the degree of £; in m. Then
we have the following.

(1) If 9;(m) = 1, then F‘TO} mk,, = —mk,,.

(2) ]fm = mlfimg and 8i(m2) = 0, then mlfieimgkw = mleifimgkw,
Proof. Since [}Elo} f;, = £, [Efﬂ and [f‘il;o} f; = £, [1211} for j =4 — 1,4+ 1,
it follows that [Rlo} m=nm [Ei‘*{r’i(m)] Since [Elc} k, = ck, for ¢ = 0,—1 and

fie; = e;f; — [R,;l;o}’ the two assertions follow immediately. O
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Let s; = (i, + 1) and put
. _
Ci =ms) = e(ASi)k/\(Si)f(A%) = eky(s)fi = koeifiky = kofieiky,
where

/\(S’i) = A(AS1) = (Ul(ASi)’ T ’O.n(ASi)) = (17 T ,1,(9),2, I.- al)

as defined in .14] For any i we have k,e; = e;ky(s,) by 8] since \(s;) = w + .

Theorem 9.3. The elements T; :== C; —v~', 1 < i < n — 1, satisfy the following
relations:

(a) (Ti —v)(Ti +v7") =0;

(b) T;T; = T,T; when |i —j| > 1;

(C) TiTH—lTi = Ti—i—lTiTi—i-l when 1 < 1 <n—2.

~X
In particular, T; is invertible and T;l i — .

Proof. Tf T; ! has the required form, then (a) follows. So, to prove (a), we must
show that

(Ci —v H(C; —v) = 1.

This is clear, since

k; —k; !
: 1 )k)\(si)fi

c? = (eikr(s,fi)(eiknis,)fi) = eika(s,)(eifi — p—
= (’U —+ U_l)eik)\(si)fi = (U —+ v_l)Ci.

Here we use E5)(2) and the fact that, since the i-th component of A\(s;) is 0, ET2(1)
implies ky(s,ye; = 0. The relation (b) follows easily from the relation C;C; = C;C;
whenever |i — j| > 1. We now prove (c). Since

T;Ti+1T; = CiCit1C; — C; — v (CiCig1 + Cit1Ci) + 07 2(Cy + Cigr) + 077,
and a similar formula holds with ¢ and 7 + 1 switched, it suffices to prove that
(9.3.1) CiCis1Ci — C; = Cis1CiCis1 — Ciy1.

For notational simplicity, put C' = C;C;+1C; and C’ = C;4+1C;C;+1. Then
C =ky,(eifieir1fir1eifi)ky, C' =ky(eir1fir1eifieir1fiv)ke.
Now, by 11
e;ifieip1firieif; = eei41(fie)fipif = ejeiq1(e;f; — {kzl’ O] VEiv1Es
=e;ejr1e8 L1 — [ki;l_l] e;ei+1fi+11;.
By the quantum Serre relations,

2 2 2 2
e;ejr1€;f;f41%; = (eE )ei-i-l + ei+1e§ ))(fl(' )fi-i-l + fi+1f§ ))

= 652)ei+1(f§2)fz‘+1 + fi+1f§2)) + ei+1e§2)(f§2)fi+1 + fi+1f§2))-
Since kwef) =0=kye;1 eEQ) by EE12(1), multiplying by k., gives

ki —1
C=—k, [ “1 ] eie;r1fip1fik, = koeeip1fip1tiky,.
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The calculation of C’ can be done similarly by switching the subscripts ¢ and i + 1;
SO
2 2 2 2
eir1ei€it1fip1fifip1 = (eg_i_)lei + eieg_‘_)l)(fz(4+)1fi + fifq(;-i-)l)
2 2 2 2 2 2) (2
= e et s + ££2) + eiel £, + el £ 1,

However, in this case, only the first two summands vanish after multiplying by k.
Thus,

2) (2 ki —1
C, = kw(eieg.k)lfz(‘_k)lfi - |: “1 :| ei+1eififi+1)kw.

Now, by 23(7) and the last relation in 1] we have

2) (2
ei(ez(+)1fz(‘+)1)fi

Kiy1;—2 kit1;0
—ei(fgi)1e§?1+fi+1[ 1 ]ei+1+{ o ])fi

2) (2 kit1:1 Kit1;1 Kiy1;0
= eifg+)1e§Jr)1fi + |: 1+21 :| e;f; + |: 1+11 :| ei(ei+1fi+1 — |: 1+11 :|)fz
The first two terms vanish after multiplying by k. The last two terms equal
~ ~ 2
ko151 kiy1;1
[ Z+11’ ]eiei+1fi+1fi - [ Z+11’ } e;f;.
On the other hand, we have
ki; 0 k;; 1
eir1eififit1 = eipi(fie; + [ 11’ ])fi+1 =e;it1fieifip + [ 11’ ] ei+1fit1.
Since kye;4+1f;e;f;41k, = 0, we obtain after combining everything that
C' =kpeieip1fiy1fike —Ci+Ciy1 = C — C; + Ciyq.
This proves (@.3.1)), and hence (c). O
Interestingly, the commuting relations [£Ig) and the quantum Serre relations

HTl(d),(e) give rise to the braid relation @3|(c). We also record the following relations
on the elements C; (cf. [8 (H1-3)] and [24] §2]):

(9.3.2)
(1) cZ=(w+vh)Cy
(2) CiCj = CjCi for |Z —]| > 1;
(3) CiCi+1Ci - Ci = Ci+1CiCi+1 - Ci+1 for 1 < ) < n—2.
For a permutation y : i — y; in &, let
I=I,={ili<y}, J=Jy={jlj>y}
Since Y-, (i — y;) = 0, we have immediately
deg(Af) =D (yi—i) =D _(j —y;) = deg(4,).
iel jeJ
We fix an order on I = {iy,--- ,is} (s = #I) such that y;; > --- > y;, and an order
onJ ={j1, -+ ,j¢} (t =#J) such that j; < --- < j;. Forany i € I and j € J we
put

Cliy;) = @i®it1 ey, —1, T(jy)=Ei1fj 2y,
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Here for a < b and ¢ > d, we use the notation
[a,b) :={a,a+ 1, -+ ,b—1}, (¢,d] :={c—1,c—2,--- ,d}.

Then .
A Al
e = ey ey ENY =G0 G-
Theorem 9.4. For any w € &, there is a reduced expression w = 8;, --- 8,
satisfying

m(Aw) — Cil . Ci['

Proof. Fori=1,--- n, identify &; with the subgroup of &,, generated by s1,--- ,
si—1. We induct on the smallest integer m such that w € &,,. If m = 1, then w = 1;
som(4w) =k, the identity element in H, and the result is clear. Thus, assume, for
some m > 1, that m(4=) = Ci, - - - C;, whenever z € &,,_1. For notational simplicity,
we take m = n. It suffices to prove that if z = ws,,_1---s; for some ¢, i < n and
some w € &,_1, then n4:) = plAwlg, ;.. -Ci.E In the case ¢ = n, this means
just that z = w € &,,_1, and the result is true by the inductive hypothesis. So we
proceed by downward induction on 1.
Write A,, = Ay, and for 1 <i<n—1, set

A = Aj1 Ay, = ApA,, - Ay,

Since A; is obtained from A;;; by switching the ith and (¢+1)th columns of A;, the
permutation matrix A; has a 1 in the (n,?)-position. Also, the entries in the first
1 — 1 columns of A; and A,, agree identically. In addition, the ith,--- ,(n — 1)th-
columns of A,, identify with the (i + 1)th,--- ,nth columns of A;. Simply put, the
matrix A; is obtained from the matrix A, by cyclically permuting to the right the
last n — 7 + 1 columns of A,.

Put y = wsp—_1 -+ Si41, so that 4,41 = A,. Write B = (b; ;) = A, for simplicity.
We can assume that m(4v) = n(Aw)g, ;.. -C;41. By the notation introduced before
the statement of the theorem, j; = n (t = #J) and y;, = ¢ + 1. We must consider
two cases:

Case 1. Suppose i # y, for all a € J. Thus, the 1 appearing in column i of B
does not appear in B™. It is either on the diagonal or above the diagonal. That is,
there exists k < ¢ such that b ; = 1.

Case la. If i & (jq,y;,] for alla=1,--- ¢, then e; commutes with every factor

f(j.y,) appearing in £(B7) and hence
(9.4.1) n®)¢; = k,eBNEB ek, = k6B et B 1k,
Since the 1 in the i-th column of B is not in B~
(9.4.2) £(B g, — g(A]),
If k =4, then (A;)ii+1 =1 (= (Ai)n,) and
e e = efi yi) Oy ®iC i) Ol
where y;,., < i < y;,: if i = y;,, then the i-th column of B would have two

1’s, which is impossible. Thus, ¢ < y;, and eBNe; = (A, Now @4 gives
n(B)¢; = m(4d),

10Here we use the fact that if w = t1---ty is a reduced expression for w, then z =
t1 - tuSn—1---8; is a reduced expression for z.
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If k£ < i, then i = y, for some a € I and

BT
o) = eliy ) i) Sl

Since e; commutes with all the factors on the right-hand side of e[, ;) and e[, ;)e; =
€[a,i+1), it follows that e(Be; = ¢4 and hence, combining@Z2 n(B)¢; = m(4).

Case 1b. If i € (ja,y;,] for some a € J (perhaps more than one), then j, > ¢ >
Yj,- 1f bis the largest among those a’s, the monomial m = [[, _, ., £(j..y,.] (t = #J)
does not involve f;. Hence, m does not involve f; ;1 and f;41: if £;_7 is involved,
then j, — 1 =14¢—1 and so j, =i for some a > b, but j, > ¢, which is absurd since

Jb < Ja; if 4,41 is involved, then i + 1 = j,, for some b < a <t and so column ¢ + 1
of B has two 1’s. Thus, by BT,

H f(javyja]eifi:f(jbryjb]ei H f(ju:yja]fi
b<ast b<a<st

=fj_ 1 (fiei)fimq--- H f(javyja]fi.
b<a<st

Since j; = n and y;, = i + 1, it follows that 9;(f,_1 "'Hb<agtf(ja,yja]fi) = 0.
By B.2(2), Ha>b f(jary;.1€ifike = € Ha>b £(jary;u) fikw- A similar argument, using
induction and repeatedly applying [1.2] implies that e; “commutes” with every
£ (juysn] With @ € (ja,y5,] and i@ < j, — 1. Finally, if 4 = j, — 1 occurs, then for
any 1 <b < a—1wehave i ¢ (ji,y;,]. So, after switching e; with £;, , 7, which
is possible using @2(2) again, we may commute e; with the rest of the product.
This proves [0.4.1]in this case. The rest of the argument is entirely similar to the
previous case. Therefore, we eventually obtain m(g)C; = m(49),

Case 2. Suppose i = y; for some j € J. Then the 1 in column ¢ of B appears in
B~. So there exists k € J, k > i, with by; = 1. This implies that BT = AZF. Let
k = jo. Forany a < b < t, if i € (jip,y;,], then ¢ # y;,. We claim that ¢ < j, — 1.
Suppose the contrary: i = j, — 1. Then j, =i+ 1 and so k = j, < jp =i+ 1, which
is absurd since k > 4. Thus, from the argument in Case 1b, we see that

( H £ (o)) 0T ik = e H £ (o)) EiKeo-
a<b<t a<bgt
Therefore, we have
f(B_)e,L-fikw = f(jlvyjl] . f(ju,i]e’i . f(n,iJrl]fikw
k;; 0
= LGiy,] TGearn (@i — [ 11, })"'f(n,i+1]fikw

- k;: 0
et Vtik, — fGrwn) L Gait) { z1 ] o E i fike.

Here the first term requires a commutation between 6w T Gani) and e;,
which can be argued as above by

We claim that £(F )£k, = 0. Indeed, since £k, = ky(s,)E4, it suffices to prove
that £(P )k, (s,) = 0. We observe that the ith entry )\Z(.t) of AV) := X\(s;) is 0 and,
if £ ip1)kx = Bxe-1 f(pn,i41], then, by A8, the ith entry Az(-tfl) of A(*=1) is also 0.
Inductively, for any a < b < ¢, if £ Gy s, 1 KA =0, then we are done. Otherwise, we

have £(;, ;1K) = Kye-n1(j, 4] such that )\Eb—l) = 0. This is seen as follows: if
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i & (Jb,yj,), then i < y,;, and /\Ebfl) = )\gb) = 0; if ¢ € (jip,yj,], then £,11£;f,_1 is a
factor of £ (G ] which guarantees Az(-bfl) = 0. In the worst case scenario, E.12(1)

implies £, k)@ = 0, since )\Ea) =0.
On the other hand, the argument above shows that [, _, ., £ (ji,,y;,) has the same
number of f;_1, f; and £;1; while £(,, ;;1)f; has one f;;; and one £;. By[@0.2(1),

k;; 0
[11 ] H £y Eilw = = H oz, 1 Tk

a<b<t a<bst

Combining all these observations, we obtain
£F eitiko = £, TGasysa+1) Emirnfike = 14 k.
Since BT = A;‘, we have proved that m(P)¢; = m(4). O

Corollary 9.5. The integral algebra H is generated over Z by the C;, and hence,
by the T;. Therefore, H is isomorphic to the Hecke algebra H(G,) (LAI). In
particular, the C; together with the relations [X32) form a presentation of H.

Proof. The first two assertions follow from and @4 Thus, the generators and
relations given in[2.3] form a presentation for H, easily giving the last assertion. [

Remarks 9.6. (1) With this presentation, the monomial basis 9, is a set of certain
monomials in the C;. 3
(2) In the notation of [15], T; corresponds to Ty, = v~ 1T}, and C; corresponds to

1
Cq,-

ACKNOWLEDGEMENT

The authors thank the referee for providing the authors with a voluminous list of
comments, and, in particular, for pointing out an incorrect statement in an earlier
version of the paper.

REFERENCES

1. A. A. Beilinson, G. Lusztig and R. MacPherson, A geometric setting for the quantum defor-
mation of GLy, Duke Math. J. 61 (1990), 655-677. MR 91m:17012

2. K. Bongartz, On degenerations and extensions of finite-dimensional modules, Adv. Math.
121 (1996), 245-287. MR 198e:16012

3. V. Chari and N. Xi, Monomial bases of quantized enveloping algebras, in “Recent develop-
ments in quantum affine algebras and related topics” (Raleigh, NC, 1998), 69-81, Contemp.
Math., 248, Amer. Math. Soc., Providence, RI, 1999. MR [2001c:17023

4. B. Deng and J. Du, On bases of quantized enveloping algebras, to appear.

5. R. Dipper and G. James, The g-Schur algebra, Proc. London Math. Soc. 59 (1989), 23-50.
MR 90g:16026

6. R. Dipper and G. James, g-tensor space and q-Weyl modules, Trans. Amer. Math. Soc. 327
(1991), 251-282. MR 91m:20061

7. S. Doty and A. Giaquinto, Presenting quantum Schur algebras as quotients of the quantized
universal enveloping algebras of gly, preprint.

8. S. Doty and A. Giaquinto, Presenting Schur algebras, International Mathematics Research
Notices IMRN 2002:36 (2002) 1907-1944.

9. J. Du, A note on the quantized Weyl reciprocity at roots of unity, Alg. Colloq. 2 (1995),
363-372. MR [96m:17024

10. J. Du, ¢-Schur algebras, asymptotic forms, and quantum SLy,, J. Algebra 177 (1995), 385-
408. MR 96k:17021

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


http://www.ams.org/mathscinet-getitem?mr=91m:17012
http://www.ams.org/mathscinet-getitem?mr=98e:16012
http://www.ams.org/mathscinet-getitem?mr=2001c:17023
http://www.ams.org/mathscinet-getitem?mr=90g:16026
http://www.ams.org/mathscinet-getitem?mr=91m:20061
http://www.ams.org/mathscinet-getitem?mr=96m:17024
http://www.ams.org/mathscinet-getitem?mr=96k:17021

1620 JIE DU AND BRIAN PARSHALL

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

41

. J. Du, B. Parshall and L. Scott, Quantum Weyl reciprocity and tilting modules, Comm. Math.
Phys. 195 (1998), 321-352. MR [99k:17026

J. Du and B. Parshall, Linear quivers and the geometric setting for quantum GLy, Indag.
Math., in press.

J. Du and H. Rui, Based algebras and standard bases for quasi-hereditary algebras, Trans.
Amer. Math. Soc. 350 (1998), 3207-3235. MR [99b:16027

R. Green, gq-Schur algebras as quotients of quantized enveloping algebras, J. Algebra 185
(1996), 660-687. MR 97k:17016

D. Kazhdan and G. Lusztig, Representations of Cozeter groups and Hecke algebras, Invent.
Math. 53 (1979), 165-184. MR |81j:20066

M. Jimbo, A g-analogue of U(gl(N +1)), Hecke algebras, and the Yang-Baxter equation, Lett.
Math. Phy. 11 (1986), 247-252. MR 87k:17011

G. Lusztig, Modular representations and quantum groups, Contemp. Math. 82 (1989) 59-77.
MR 90a: 16008

G. Lusztig, Finite-dimensional Hopf algebras arising from quantized universal enveloping
algebras, J. Amer. Math. Soc. 3 (1990), 257-296. MR [91e:17009

G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc.
3 (1990), 447-498. MR [90m: 17023

G. Lusztig, Aperiodicity in quantum affine gl,, Asian J. Math. 3 (1999), 147-177. MR
2000i:17027

G. Lusztig, Transfer maps for quantum affine sl,, In Representations and quantizations
(Shanghai, 1998), China High. Educ. Press, Beijing (2000), 341-356. MR 2002f:17026

O. Schiffmann and E. Vasserot, Geometric construction of the global base of the quantum
modified algebra of ﬁ[n, Transf. Groups 5 (2000), 351-360. MR [2001k:17029

M. Takeuchi, Some topics on GLq(n), J. Algebra 147 (1992), 379-410. MR [93b:17055

H. Wenzl, Hecke algebra of type An and subfactors, Invent. Math. 92 (1988), 349-383. MR
90b:46118

SCHOOL OF MATHEMATICS, UNIVERSITY OF NEW SOUTH WALES, SYDNEY 2052, AUSTRALIA
E-mail address: j.du@unsw.edu.au
URL: http://www.maths.unsw.edu.au/~jied

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VIRGINIA, CHARLOTTESVILLE, VIRGINIA 22904-
37

E-mail address: bjp8w@virginia.edu

URL: http://wuw.math.virginia.edu/~bjp8w

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


http://www.ams.org/mathscinet-getitem?mr=99k:17026
http://www.ams.org/mathscinet-getitem?mr=99b:16027
http://www.ams.org/mathscinet-getitem?mr=97k:17016
http://www.ams.org/mathscinet-getitem?mr=81j:20066
http://www.ams.org/mathscinet-getitem?mr=87k:17011
http://www.ams.org/mathscinet-getitem?mr=90a:16008
http://www.ams.org/mathscinet-getitem?mr=91e:17009
http://www.ams.org/mathscinet-getitem?mr=90m:17023
http://www.ams.org/mathscinet-getitem?mr=2000i:17027
http://www.ams.org/mathscinet-getitem?mr=2002f:17026
http://www.ams.org/mathscinet-getitem?mr=2001k:17029
http://www.ams.org/mathscinet-getitem?mr=93b:17055
http://www.ams.org/mathscinet-getitem?mr=90b:46118

	1. Introduction
	2. The quantized enveloping algebra of gln
	3. The Beilinson-Lusztig-MacPherson construction and monomial bases
	4. The algebra Sr
	5. The isomorphism between Sr and Ur
	6. Integral forms and PBW bases
	7. The transfer maps Un+rUr
	8. Presentations for Borel subalgebras
	9. Identifying the monomial basis in H
	Acknowledgement
	References

