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LOGMODULARITY AND ISOMETRIES
OF OPERATOR ALGEBRAS

DAVID P. BLECHER AND LOUIS E. LABUSCHAGNE

Abstract. We generalize some facts about function algebras to operator al-
gebras, using the “noncommutative Shilov boundary” or “C∗-envelope” first
considered by Arveson. In the first part we study and characterize complete
isometries between operator algebras. In the second part we introduce and
study a notion of logmodularity for operator algebras. We also give a result
on conditional expectations. Many miscellaneous applications are provided.

1. Introduction

The main topic of our paper is the study of linear maps T : A → B between
operator algebras. By an operator algebra we mean a uniformly closed algebra of
operators on a Hilbert space H , and we usually assume that such algebras are uni-
tal (that is, contain an identity of norm 1), or are approximately unital (that is,
contain a contractive two-sided approximate identity (c.a.i.)). Operator algebras
may be viewed as noncommutative function algebras. Indeed, every function al-
gebra or uniform algebra on a compact space K containing constant functions is
a closed unital subalgebra of the commutative C∗-algebra C(K), and hence is a
unital operator algebra.

It is currently commonly recognized that to study a general subalgebra A ⊂
B(H) it is necessary not only to take into account the norm, but also the natural
norm on the matrix spaces Mn(A) ⊂ Mn(B(H)) ∼= B(H(n)). This has been one
of the key perspectives of operator space theory, since Arveson’s pioneering work;
and the present paper may in some sense be regarded as an extended series of
observations proceeding from Arveson’s papers [6], [7], [5].

Hence we are not interested here in bounded linear transformations; rather we
look for the completely bounded maps—where the adjective “completely” means
that we are applying our maps to matrices too. Thus if T : X → Y , then T is
completely contractive if and only if

‖[T (xij)]‖ ≤ ‖[xij ]‖

for all n ∈ N and [xij ] ∈ Mn(X). We say that T is completely isometric if
‖[T (xij)]‖ = ‖[xij ]‖ for all n ∈ N and [xij ] ∈ Mn(X). In much of this paper
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we are interested in complete isometries between operator algebras, and in general-
izing facts for isometries between function algebras (note that isometries between
subspaces of function algebras are the same thing as complete isometries, as may be
seen from [40], Theorem 3.8). We now briefly review some of these facts. The clas-
sical Banach-Stone theorem characterizes linear isometries between C(K) spaces,
that is, between commutative unital C∗-algebras. There is an analogous result for
function algebras (see e.g. p. 144 in [25]; [37]). These results have been extended
in many directions (see [26] for a survey). The not necessarily surjective isometries
between C(K) spaces were characterized by Holsztynski, whereas in the case of
function algebras there is the following more general result from [36] (for closely
related results see [38], and particularly [2], Section 6):

Theorem 1.1 ([36]). A linear map T : A → B between uniform algebras is an
isometry if and only if T is contractive and there exist a closed subset E of ∂B and
two continuous functions γ : E → T and ϕ : E → ∂A, with ϕ surjective, such that
for all y ∈ E,

T (f)(y) = γ(y)f(ϕ(y)).

Here T is the unit circle, and ∂B is the Shilov boundary of B (which equals
K if B = C(K)). Informally, the result says that for any isometry T there is a
certain ‘part E of the space B acts on’, such that T restricted to this part has
a particularly nice form, a form which amongst other things ensures that T is an
isometry. The action of T on the ‘complementary part’ plays little role in the fact
that T is an isometry. If T is unital (that is, T (1) = 1), then the γ may be omitted
in the theorem, and then T compressed to E is the composition operator f 7→ f ◦ϕ,
which is an isometric homomorphism.

For surjective isometries between C∗-algebras the first ‘noncommutative Banach-
Stone theorem’ is due to R. V. Kadison [27]. Related isometric results were obtained
by Harris, Arazy and Solel and many others (see [3], [39], [1], for example). In Part
I of our paper we consider unital or approximately unital operator algebras A and
B, and (not necessarily surjective) linear maps T : A → B, and we will establish
several criteria which are each equivalent to T being a linear complete isometry.
These are generalizations of 1.1 because, as we said earlier, any function algebra
is a unital operator algebra; and moreover, isometries between function algebras
are completely isometric. In the result above we saw the importance of the Shilov
boundary; in the noncommutative case we will need to use the noncommutative
Shilov boundary, or more specifically the C∗-envelope C∗e (A), of an operator algebra
A. This will be described in more detail towards the end of this introduction.

One such characterization proceeds as follows. Suppose that A,B are operator
algebras, and suppose that B is a subalgebra of a C∗-algebra C. Suppose that
T : A→ B is a linear map. For the purposes of additional clarity, here we assume
that A,B and T are unital (in the general case one needs to add a partial isometry
and a second projection q to the statement that follows). Then T is a complete
isometry if and only if there is a projection p in B(Hu), where Hu is the Hilbert
space of the universal representation of C, such that, firstly,

pT (·) = T (·)p = pT (·)p = π(·)

for a completely isometric homomorphism π that is the restriction to A of a 1-1
*-representation C∗e (A) → B(pHu); and secondly, the map S = (1 − p)T (·)(1 − p)
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is a complete contraction. This is saying that, up to a choice of orthonormal bases,
T is of ‘block diagonal’ form [

π(·) 0
0 S(·)

]
.

In Part I we also consider particularly interesting subclasses of complete isome-
tries between operator algebras. In particular, we investigate a class which was
introduced in the commutative case by Matheson under the name type 1 isometry.

As we have said, an important tool is the C∗-envelope C∗e (A) of an operator
algebra A. However, there are two basic obstacles associated with this tool, which
we address (with very partial success) in the second half of our paper. The first
obstacle is that of identifying C∗e (A) for a given operator algebra A. Following the
classical case, we introduce a notion of logmodularity for operator algebras, and show
that for a logmodular subalgebra A of a C∗-algebra B, the C∗-envelope of A is B.
We develop some basic theory of logmodular algebras, giving for example a result
which is a noncommutative version of the uniqueness of representing measures.
Indeed, this result ensures that a completely contractive homomorphism θ defined
on a logmodular operator algebra has at most one completely contractive extension
to C∗e (A). This extension will be completely isometric if θ is.

A good example of a logmodular algebra in the commutative case is the Hardy
space H∞(D); and in the noncommutative case the noncommutative H∞ algebras
introduced by Arveson (also known as finite maximal subdiagonal algebras). In
section 5 we make a few observations about these algebras using the facts in the
previous paragraph. In this section we also prove some general results on conditional
expectations of non-selfadjoint operator algebras.

The second obstacle associated with the C∗-envelope arises when C∗e (A) is rather
complicated. Again a good example of this is H∞(D). In light of the known charac-
terizations of isometries of other common function algebras in terms of composition
operators (see [48], for example), one would hope for a characterization in which
analytic self-maps of the open disk play a major role (as opposed to self-maps of
the largely unhelpful Shilov boundary). However, for this purpose our results on
complete isometries from Part I are often not helpful. To illustrate this point we
recall that there is no such known characterization of isometries H∞(D)→ H∞(D).
In section 3 we make a few observations concerning isometries of H∞(D). Our main
interest, however, is in the noncommutative versions, and we are currently working
with A. Matheson in this direction.

We end this introduction with some notation and basic facts. For more details
on operator spaces we refer the reader to [19], [40], [42]. We write H,K,L for
Hilbert spaces. Perhaps confusingly, we will use the symbols I, J,K for ideals in a
C∗-algebra. All ideals are taken to be uniformly closed. A projection on a Hilbert
space, or in a C∗-algebra, will mean an orthogonal projection. Otherwise we use
the word projection for a linear self-map P with P ◦ P = P . If Y is a subspace
of X , we write qY or q for the canonical quotient map X → X/Y . For a set of
operators on a Hilbert space, or for a subset of an operator algebra, we write S∗

for the subset consisting of adjoints of elements of S; S+ for the set of x ∈ S with
x ≥ 0; and S−1 for the invertible elements of S whose inverse is also in S. We write
|b| for (b∗b)

1
2 . To avoid possible confusion, the Banach dual of a Banach space X

will be denoted by X?. The canonical map X → X?? is written as ˆ.
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If X,Y are subspaces of a Banach algebra, we write XY for the uniform closure
of the set of finite sums of products of the form xy for x ∈ X, y ∈ Y .

An operator system is a unital selfadjoint subspace X of a unital C∗-algebra or
of B(H) (i.e., X contains the identity element, and x ∈ X if and only if x∗ ∈ X). A
unital operator space has the same definition, except we do not require that X∗ =
X . The appropriate morphisms between operator systems are unital completely
positive maps. Rather than state the (obvious) definition of a completely positive
map, we will simply use the fact that a unital linear map S between operator
systems is completely contractive if and only if it is completely positive, in which
case it is *-linear, i.e., S(v∗) = S(v)∗. See [6], [40] or [17] for proofs.

Lemma 1.2 (Arveson, see e.g. [17]). Suppose that V is a subspace of an operator
system that contains the identity element, and suppose that ψ : V → B(K) is a
unital contraction with range W . Then there exists a unique positive map between
the operator systems V +V ∗ and W +W ∗ that extends ψ. If ψ is a unital complete
contraction (resp. unital complete isometry), then the unique positive extension to
V + V ∗ is a completely positive map (resp. a unique complete order isomorphism)
between the operator systems V + V ∗ and W +W ∗.

As an aside, we note that in the context of Hp spaces, the last result seems to
translate to a principle whereby composition operators on Hp(D) spaces may be
extended to positive integral operators on the enveloping Lp(T)-spaces. (See [47].)

Now if T : X → A and S : X → B are unital complete isometries of an
abstract unital operator spaceX into C∗-algebrasA and B, then by the above result
there exists a unique complete order isomorphism between the operator systems
T (X) + T (X)∗ and S(X) + S(X)∗ which extends the map S ◦ T−1 from T (X)→
S(X). As a corollary of this, one may easily check that if A is an abstract unital
operator algebra, then the two spaces ∆(A) = A ∩ A∗ (the diagonal of A) and
A+ A∗ are ‘well defined’ independently of the particular C∗-algebra containing A
as a unital subalgebra. Note that ∆(A) is a C∗-algebra (indeed, it is a W ∗-algebra
if A is a ‘weak* closed operator algebra’), and A + A∗ is an operator system. See
also [3] for some interesting related facts.

If X is a unital operator space, then there exists a C∗-envelope of X , namely
a pair (B, j) consisting of a unital C∗-algebra B and a unital complete isometry
j : X → B whose range generates B as a C∗-algebra, with the following universal
property: For any other pair (A, i) consisting of a unital C∗-algebra and a unital
complete isometry i : X → A whose range generates A as a C∗-algebra, there
exists a (necessarily unique, unital, and surjective) *-homomorphism π : A → B
such that π ◦ i = j. The kernel Kerπ is called the Shilov boundary ideal of X
in A. The existence of the C∗-envelope with the universal property above we call
the Arveson-Hamana theorem [6], [22], and as customary we write C∗e (X) for B or
(B, j) (it is essentially unique, by the universal property). Note that this use of the
term ‘Shilov boundary’ matches the classical situation, where the Shilov boundary
∂A of a unital subspace X ⊂ C(K) is the smallest closed subset of K on which each
member of X attains its uniform norm. It thus corresponds to the largest ideal of
C(K) for which the canonical map X → C(K)/J is isometric (and therefore, by
an earlier remark, completely isometric).

If A is a unital operator algebra, then it is easy to see that j in the last paragraph
is forced to be a homomorphism. Thus A may be considered a unital subalgebra
of C∗e (A). If A is an approximately unital operator algebra, then one may define
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C∗e (A) to be the C∗-algebra generated by A inside the C∗-envelope of the unitization
of A. One easily sees that C∗e (A) has the desired universal property.

For the purposes of this paper we define a triple system to be a (uniformly closed)
subspace X of a C∗-algebra such that XX∗X ⊂ X . The important structure on a
triple system is the triple product xy∗z. A triple subsystem is a uniformly closed
vector subspace of a triple system that is closed under this triple product.

It is well known that XX∗X = X for a triple system X . Also, it is clear that
XX∗ and X∗X are C∗-algebras, which we will call the left and right C∗-algebras
of X respectively, and X is a (XX∗)-(X∗X)-bimodule. A linear map T : X → Y
between triple systems is a triple morphism if T (xy∗z) = T (x)T (y)∗T (z) for all
x, y, z ∈ X . Triple systems are operator spaces, and triple morphisms behave
very similarly to *-homomorphisms between C∗-algebras: triple morphisms are
automatically completely contractive and have closed range. A triple morphism is
completely isometric if it is 1-1. The kernel of a triple morphism on X is a triple
ideal (that is, a uniformly closed (XX∗)-(X∗X)-subbimodule). The quotient of a
triple system by a triple ideal is a triple system in an obvious way. If one factors
a triple morphism by its kernel, one obtains a 1-1 triple morphism on the quotient
triple system. These results are all rather old, may be found in [23], and are related
to results of Harris and Kaup.

If X is any operator space, then, there exists a triple envelope of X , namely a
pair (Z, j) consisting of a triple system Z and a linear complete isometry j : X → Z
whose range generates Z as a triple system (that is, there exists no nontrivial closed
triple subsystem containing j(X)), with the following universal property: For any
other pair (W, i) consisting of a triple system and a complete isometry i : X →W
whose range generates W as a triple system, there exists a (necessarily unique and
necessarily surjective) triple morphism π : W → Z such that π ◦ i = j. Again one
may call Kerπ, which is a triple ideal in W , the Shilov boundary ideal of X . This
theorem, dating from the 80s, is due to Hamana [23], and we write T (X) for Z
or (Z, j) (as before, it is essentially unique, by the universal property). The triple
envelope or C∗-envelope is usually defined as a subspace of the injective envelope
(I(X), j). We will also need this latter envelope, but since our use of it is quite
limited we will not take the time to define it here, and instead refer the reader to
[23] or [19] for more details (the forthcoming revision of [40] focuses extensively on
this topic too). See also [10] for a more thorough discussion of the concepts in the
last several paragraphs.

Part I. Characterizations of complete isometries

2. General Banach-Stone theorems

between non-selfadjoint operator algebras

Suppose that T : A→ B is a surjective unital complete isometry between unital
operator algebras A and B. Then, by the universal property of the C∗-envelope,
T extends to a unital complete isometry T̃ between the C∗-envelopes C∗e (A) and
C∗e (B). By the universal property T̃ is a *-homomorphism (or this may be seen by a
simpler Banach-Stone theorem for C∗-algebras such as 5.2.3 in [19]). Consequently
T is also a homomorphism. In fact, even if T is not unital, the same argument
works (modulo a few technical details) to show that:
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Theorem 2.1 ([6], [7], [8], [18] and B.1 in [10]). Suppose that T : A → B is a
linear map between approximately unital operator algebras. Then T is a surjective
complete isometry if and only if T = uθ(·), where u is a unitary in the diagonal
∆(M(B)) of the multiplier algebra of B, and where θ : A→ B is a surjective com-
pletely isometric homomorphism which is a restriction of a *-isomorphism between
the C∗-envelopes of A and B. Furthermore, the surjective complete isometry T is
unital if and only if the u above equals 1B, and if and only if T is a homomorphism.

In the remainder of this section, and in the following section, we attempt to
find analogous results for nonsurjective complete isometries between non-selfadjoint
operator algebras, and we give some applications. These will generalize Theorem
1.1, stated in the introduction. The first set of characterizations will be collected in
the following theorem. We apologize in advance to the reader—since this is quite
similar to the analogous result for selfadjoint operator algebras (Theorem 3.1 in
[12]), we cannot justify repeating all the ideas and notation established there. Thus
we must refer the reader to that paper for further details regarding our notation
and proof.

Suppose that B is a subalgebra of a C∗-algebra C. A reducing ∧-compression
of a map T : X → B is a map R : X → C?? such that there exist projections
e, f ∈ C?? such that

R = T̂ (·)e = fT̂ (·) = fT̂ (·)e.
Thus if C is represented on its universal Hilbert space Hu, then there are subspaces
L,M of Hu (corresponding to e, f) such that R = PMT (·)L, and T = R ⊕ S for a
completely contractive S : X → B(L⊥,M⊥).

Theorem 2.2. Let T : A → B be a linear completely contractive map between
approximately unital operator algebras. Suppose that B is a subalgebra of a C∗-
algebra C (for example, C = C∗e (B)). Then the following are equivalent:

(i) T is a complete isometry.
(ii) There are a left ideal J and a right ideal K of C such that qJ+K ◦ T is

the restriction to A of a linear map S : C∗e (A) → C/(J + K) such that S
composed with the canonical injection C/(J +K)→ (1− q)C??(1− p) is a
triple morphism. (Here q and p are the so-called support projections of J
and K respectively. See [12] for the details.)

(iii) T has a reducing ∧-compression R : A→ C?? which is the restriction of a
1-1 triple morphism from C∗e (A) into C??.

(iv) There are a partial isometry u in C??, a projection p in C?? (which may
be chosen so that 1 − p is the initial projection u∗u of u), and a 1-1
*-homomorphism θ : C∗e (A)→ (1− p)C??(1− p), such that

T̂ (a)(1− p) = uθ(a) and θ(a) = u∗T̂ (a),

for all a ∈ A. If A is unital, then θ(1) = u∗u.
If A is unital, these are equivalent to:

(v) There exists a closed left ideal J of C such that for all a ∈ A we have

qJ (T (a)) = uπ(a) and π(a) = u∗qJ (T (a)),

where qJ : C → C/J is the canonical quotient map, π : A → C/(J + J∗)
is a completely isometric homomorphism which is the restriction of a 1-1
*-homomorphism C∗e (A)→M00(C/(J+J∗)) (see [12] for definitions), and
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u is a partial isometry in B/J ⊂ C/J which may be taken to be u =
qJ (T (1)).

(vi) There exist a C∗-subalgebra D of C containing T (A)∗T (A), a closed two-
sided ideal I in D, and a surjective *-isomorphism π : C∗e (A)→ D/I, such
that

qN ◦ T = U π(·),
where qN is the canonical quotient triple morphism from the triple subsys-
tem Z = T (A)D of C onto the quotient of Z by the triple ideal N = ZI,
and U is a unitary in the triple system Z/N . One may take U = qN (T (1)).

Proof. This is very similar to the proof of 3.1 in [12]. So we will be brief and
omit most of the details. In particular, it is a simple exercise that any of (ii)-(vi)
implies (i). Let Z be the triple system in C generated by T (A). In [10], section
4 (see also [55]), it is shown that C∗e (A) is a triple envelope of A. Thus, by the
universal property of this envelope mentioned in the introduction, there exists a
surjective triple morphism ρ : Z → C∗e (A) such that ρ(T (a)) = a for all a ∈ A.
Set N = Kerρ, and obtain a surjective triple isomorphism ξ : C∗e (A) → Z/N .
Appealing to Lemma 2.10 in [12] almost immediately gives (vi). We may then
follow the proof of (i) ⇒ (iii) of 3.1 in [12], replacing B there by C, and so on, to
obtain a completely isometric partial triple morphism θ of C∗e (A) into C/(J +K).
The restriction of θ to A is qJ+K ◦ T . This gives (ii). We also obtain, as in
3.1 of [12], a 1-1 triple morphism T̃ : C∗e (A) → C??(1 − p) taking a ∈ A to
T̂ (a)(1− p) = (1− q)T̂ (a)(1− p) = (1− q)T̂ (a). This gives (iii). The proofs of (iv)
and (v) are then similar to the matching items of (vi) in 3.1 of [12]. We will simply
prove the assertions in (iv) that were not in the original version of [12]. Note that
the partial isometry u coming from the proof of 3.1 in [12] may be defined to be
the weak* limit of T (eα)(1− p), for a c.a.i. {eα} of A. Thus the projection

u∗u = w*lim
α

u∗T (eα)(1− p) = w*lim
α

θ(eα)

satisfies u∗u(1 − p) = u∗u, and is therefore dominated by 1 − p. By the relation
involving p and q above, it also follows that

u∗T (a) = w*lim
α

(1− p)T (eα)∗T (a) = w*lim
α

(1− p)T (eα)∗T (a)(1− p),

which is the formula given in [12] for the homomorphism θ we are looking for. Also,
by the second last displayed formula above, we have u∗uθ(a) = limα θ(eαa) = θ(a),
and similarly for θ(a)u∗u. �

Remarks. 1). If A and B are unital, another route to the proof of some parts of the
theorem may be given via first extending T to a complete isometry on the Paulsen
system [56]. However, this approach does not seem to readily give all we need. It
does show that the projection p in (iv) may be chosen to be an open projection.

2). We sketch how 1.1 follows from (v) of our theorem. In particular, as stated
in the introduction, under the hypotheses of 1.1, T is completely isometric and we
may apply 2.2. Since we find ourselves in a commutative context in 1.1, the (now
two-sided) ideal J = J + J∗ corresponds to a set of continuous functions vanishing
on some closed subset E′ of ∂B. Thus C/(J + J∗) = C(∂B)/J is then a copy of
C(E′). If π is the 1-1 ∗-homomorphism from C(∂A) into M00(C/(J+J∗)) = C(E′),
let E be the clopen subset Ker π(1) of E′. If y ∈ E and εy is ‘evaluation at y’,
then π∗(εy) is a character on C(∂A), and is therefore a point evaluation at a point
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ϕ(y) ∈ ∂A. The map ϕ : E → ∂A is then easily seen to be a continuous surjection.
Item (v) of the above theorem then gives

T (f)(y) = γ(y)f(ϕ(y)) and f(ϕ(y)) = γ(y)T (f)(y)

for all y ∈ E and f ∈ A. Here γ : E → {0} ∪ T is the partial isometry u viewed as
a function on E. Thus 1 = γ(y) T (1)(y), so that γ in fact maps into T.

In the proof of 2.2, we obtained projections p, q in C?? such that

T̂ (·)(1− p) = (1− q)T̂ (·) = (1− q)T̂ (·)(1 − p),
and saw that this expression is the restriction to A of a 1-1 triple morphism τ :
C∗e (A) → (1 − q)C??(1 − p). We call such p accomplishing all this a reducing
projection for T . From the above it is clear that

(∗) T (ab)(1− p) = T (a)T (1)∗T (b)(1− p)
for all a, b ∈ A. We will use this fact later on. We remark that in the light of the
work in [16] on isometries (as opposed to complete isometries), it seems plausible
that there is an extremal reducing projection for T , and that one might want to use
this one in applications. In the applications given later in our paper, any reducing
projection will suffice.

Corollary 2.3. Let T : A → B be a unital completely contractive linear map
between unital operator algebras. Suppose that B is a unital subalgebra of a unital
C∗-algebra C. Then saying that T is a complete isometry is equivalent to any one
of (ii)-(vi) in the previous theorem, but with the following changes: One may omit
all mention of u, change ‘triple morphism’ to ‘*-homomorphism’, and K to J∗, in
(ii), and note that the expression T̂ (a)(1 − p) in (ii) and (iv) now coincides with
(1− p)T̂ (a)(1− p). One may change (vi) to read: there exist a C∗-subalgebra D of
C containing T (A), a closed two-sided ideal I in D, and a surjective *-isomorphism
π : C∗e (A)→ D/I, such that qI ◦ T = π.

We note in passing that 2.3 is a much simpler result than 2.2, and is closely
related to [15], Theorem 4.1. Appropriate parts of this result may also be stated
in terms of block diagonal matrices as in the introduction. Suppose for example
that T : A → B is a unital complete isometry between unital operator algebras,
and suppose that B is a unital subalgebra of a unital C∗-algebra C. Let Hu be
the Hilbert space of the universal representation of C; thus we have *-subalgebras
C ⊂ C?? ⊂ B(Hu). Then, corresponding to the projection p, there is a subspace K
of Hu such that PKT (·) = T (·)PK = PKT (·)PK , and if we define R : A→ B(K) by
these equal expressions, then R is a completely isometric homomorphism (and R is
also the restriction of a 1-1 *-homomorphism defined on C∗e (A)). Then T = R⊕ S
for a completely contractive unital map S, as in the introduction. A similar remark
holds in connection with Theorem 2.2; we will see a concrete exhibition of this
momentarily in 2.5.

We proceed with some typical applications of 2.2. The first is a special case
worthy of consideration (for the proof one need only note that the simplicity re-
quirement ensures that I = {0} in 2.3):

Corollary 2.4. Let T : A → B be a unital complete isometry between unital
operator algebras A and B. Suppose that B is a unital subalgebra of a C∗-algebra
C, and suppose further that the C∗-subalgebra of C generated by T (A) is simple
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(for example, if T is a map into Mn whose range generates Mn). Then T is
automatically a homomorphism, indeed the restriction of a 1-1 *-homomorphism
C∗e (A)→ C.

Corollary 2.5. Let T : A→ B be a linear complete isometry from a unital operator
algebra into a finite-dimensional C∗-algebra.

(1) There exist a C∗-subalgebra C of B, a unital *-homomorphism π : C∗e (A)→
C, a partial isometry u in B with initial projection e equal to the identity
of C, and a final projection f , such that T (·)e = fT (·) = uπ(·).

(2) A is completely isometrically homomorphic to a subalgebra of B.
(3) If B = Mm, then there exists a unital 1-1 *-homomorphism θ : C∗e (A) →

Mn for an integer n ≤ m, and there are unitary m × m matrices U
and V , and a completely contractive map S : A → Mm−n, with T (a) =
Udiag{θ(a), S(a)}V for all a ∈ A.

Proof. (1) By the last assertion in 2.2, there exist projections e, f ∈ B, a 1-1 unital
*-homomorphism π : C∗e (A)→ eBe, and a partial isometry u such that the desired
properties hold. Note that uu∗T (·) = uπ(·) = T (·)e. (2) follows immediately
from (1). So does (3): choose an orthonormal basis B for Ran e, contained in an
orthonormal basis for Cm. Choose another orthonormal basis for Cm containing
u(B). The matrix of T (a) with respect to these two orthonormal bases is easily
seen to be diag{θ(a), S(a)}, for maps θ, S of the specified form. �

Note that (3) above implies that C∗e (A) is a finite-dimensional C∗-algebra, and
consequently *-isomorphic to a finite direct sum of blocks Mnk . Thus the θ in
(3) is a direct sum of finite multiples of the identity representation of the Mnk .
This allows one to simplify the characterization still further. For example, if Tn
is the upper triangular n × n matrices, then by the above, and because we know
that C∗e (Tn) = Mn, we may deduce that a linear map ϕ : Tn →Mm is a complete
isometry if and only if there exist unitary matrices U and V of appropriate sizes, and
a completely contractive map S : Tn →Mm−n, such that ϕ(A) = Udiag{A,S(A)}V
for all A ∈ Tn. This example can no doubt also be deduced from the very general
results on isometries between nest algebras from [1].

The ideas in the last few results also illustrate the method for computing the
C∗-envelope (which in this case equals the injective envelope) of a unital subspace
A of Mn. Namely, first one replaces Mn by the unital ∗-subalgebra B generated
by A. By the abstract principles used above, there is a central projection p in B
with B(1 − p) = C∗e (A). Since B is unitarily equivalent to (up to multiplicity) a
direct sum

⊕
kMnk of full matrix algebrasMnk , the central projection p is unitarily

equivalent to a direct sum of identity matrices Ini or 0ni matrices. Thus C∗e (A)
is simply a direct sum of a subcollection of the Mnk above. A similar idea works
for computing the triple or injective envelope of a subspace of Mn, except that
now we have two projections p and q. It is instructive, and is also a good source
of counterexamples, to select a set of two or three matrices in Mn, and then to
compute the C∗-envelope or triple envelope of their span.

We close this section with a related fact clarifying the relationship between the
categories of unital operator spaces and approximately unital operator algebra:

Corollary 2.6. If A is an approximately unital operator algebra, and if A is lin-
early completely isometric to a unital operator space, then A is a unital algebra.
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Proof. If V is the unital operator space, then it follows that the triple envelope of
A is triple isomorphic to the triple envelope of V , via a morphism taking V onto A.
The latter envelope may be taken to be C∗e (V ), which is unital [22]. Also in [10] we
showed that the triple envelope of an approximately unital operator algebra A may
be taken to be C∗e (A) (part of this was observed in [55], too). It is now easy to see
(using 2.10 in [12], for example) that C∗e (A) is unital, whence A is also unital. �

3. Characterizations of particular classes of isometries

If one considers Theorem 1.1, a ‘nicest class’ of isometries suggests itself: namely
those for which E = ∂A. A moment’s thought (using Lemma 2.10 of [12], for ex-
ample) shows that this class falls within the class of maps T : A→ B which are the
restrictions of a 1-1 triple morphism C(∂A)→ C(∂B). We shall call these the Shilov
isometries. More generally, if A and B are approximately unital operator algebras,
we say that a map T : A→ B is a Shilov isometry if T is the restriction to A of a
1-1 triple morphism C∗e (A)→ C∗e (B).

The following two results, which are fairly superficial, we state to afford a com-
parison with subsequent results.

Lemma 3.1. Let T : A → B be a linear map between unital C∗-algebras. The
following are equivalent:

(i) T is a Shilov isometry (that is, a 1-1 triple morphism).
(ii) T = uπ(·) for a 1-1 *-homomorphism π : A → B and a partial isometry

u ∈ B such that u∗u = π(1A).
(iii) T is a complete isometry with {0} = J ⊂ C = B in Theorem 2.2 (v).

We may take u = T (1A). If these equivalent conditions hold, then T (A) contains
a unitary (resp. isometry, coisometry) of B if and only if u = T (1A) is a unitary
(resp. isometry, coisometry) of B. Indeed, if 1B ∈ T (A), then T (1A) is a unitary of
B and T (A) = π(A), so that RanT is a C∗-subalgebra of B, and also π(1A) = 1B.
If in addition T (1A) = 1B, then T is a *-homomorphism.

Proof. The equivalence of (i)-(iii) we leave as an exercise (using Lemma 2.10 in
[12], for example). Set u = T (1). We will use the fact that if R,S are contractions
between Hilbert spaces with RS = I, then S is an isometry and R = S∗. Thus if
T (A) contains a coisometry v = T (a0), then v = uπ(a0), giving 1B = u(π(a0)v∗).
By the fact above about Hilbert space operators, u is a coisometry. By symmetry
we obtain the assertions for isometries and unitaries.

If 1B ∈ T (A), then u is a unitary of B by the above. Since T is a triple
morphism, it is evident that RanT is a C∗-subalgebra of B. Write 1B = T (a0).
Then π(a0) = u∗uπ(a0) = u∗T (a0) = u∗, so that u∗ and u are in the C∗-algebra
π(A). Hence T (A) = uπ(A) = π(A). Also π(1A) = u∗T (1) = 1B, since u is
unitary. �

Lemma 3.2. Let T : A→ B be a linear map between unital operator algebras. The
following are equivalent:

(i) T is a Shilov isometry.
(ii) T = uπ(·) for a completely isometric homomorphism π on A which is the

restriction of a 1-1 *-homomorphism C∗e (A)→ C∗e (B), and a partial isom-
etry u ∈ B ⊂ C∗e (B) with u∗u = π(1A).

(iii) T is a complete isometry with {0} = J ⊂ C = C∗e (B) in Theorem 2.2 (v).
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We may take u = T (1A). If these equivalent conditions hold, then T (A) contains
a unitary (resp. isometry, coisometry) of C∗e (B) if and only if u = T (1A) is a
unitary (resp. isometry, coisometry) of C∗e (B). Indeed, if 1B ∈ T (A), then π(A) ⊂
B, and also π(1A) = 1B. If in addition T (1A) = 1B, then T is a homomorphism
(namely T = π).

Proof. Again we leave the equivalences (i)-(iii) as an exercise. If 1B ∈ T (A), then
1B ∈ T̃ (A), where T̃ is the triple morphism C∗e (A)→ C∗e (B) extending T . Applying
3.1, we see that u = T (1) is a unitary of C∗e (B). Selecting a0 ∈ A such that
T (a0) = 1B, it follows as in the proof of Lemma 3.1 that u∗ = π(a0) ∈ π(A).
Notice that

uT (a2
0) = u2π(a2

0) = uT (a0)π(a0) = uπ(a0) = T (a0) = 1B.

Thus u∗ = T (a2
0), whence π(A) = u∗T (A) ∈ B2 ⊂ B. The other assertions are left

as an exercise. �
If we drop the hypothesis that T is a Shilov isometry, then things become less

simple. The problem is that our abstract result, Theorem 2.2, is difficult to use if
the ‘Shilov boundaries’ are complicated, as is the case with H∞(D) say. There is,
however, a class of complete isometries which are not Shilov isometries, but which
are fairly tractable. Namely, following Matheson [36], we say that a (not necessarily
surjective) linear complete isometry T : A→ B between unital operator algebras is
left type 1 if B ∩ J = {0} for the left ideal J in Theorem 2.2 (v). Equivalently, T is
left type 1 if the restriction to B of the canonical quotient map C∗e (B)→ C∗e (B)/J
is 1-1; or (using the fact that p ∈ J∗∗ = B∗∗p from the proof of Lemma 2.8 in
[12]) equivalently if the map b 7→ b(1− p) on B is 1-1, where p is as in the proof of
Theorem 2.2. In fact, it is the last condition that will be mostly used below; thus
one might want to define ‘left type 1’ as this condition, for some reducing projection
p for T (see the definition and discussion just above Corollary 2.3).

We remark that if one replaces C∗e (B) by any C∗-algebra containing B, most
of our proofs below will still go through. In the corollaries below we will however
regard B as a unital subalgebra of C∗e (B), and any adjoints b∗ of elements in B are
taken in that C∗-algebra.

There is an analogous definition of right type 1, namely that b 7→ (1 − q)b is 1-1
on B, where q is the projection discussed in and after the proof of Theorem 2.2.
One can show that T is right type 1 if and only if the map T ∗ : A∗ → B∗ given by
T ∗(a∗) = T (a)∗ is left type 1. We say that T is type 1 if it is both left and right
type 1.

Note that if the function algebras in Theorem 1.1 are C(K) spaces, then ‘most’
isometries are type 2 (non-type 1) isometries (since the type 1 isometries between
C(K) spaces are exactly the maps characterized in Lemma 3.1). Quite obviously,
any Shilov isometry between function or operator algebras is type 1, since in this
case J = {0}. However, it is easy to find type 1 isometries that are not Shilov
isometries. For example, Alec Matheson showed us an interesting class of examples
constructed along the following lines. Let A = A(D) be the disk algebra, and let ψ
be the Riemann map from the closed disk onto the upper half of the closed disk.
Then let ϕ(z) = ψ(z)2, and define Tf(z) = f(ϕ(z)) for f ∈ A and z in the closed
unit disk. It is easy to see that T : A → A is a unital type 1 isometry (it is type
1 because of the well-known fact that a nontrivial function in A(D) cannot vanish
on a nontrivial arc of the circle) that is not a Shilov isometry.
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For us, the main interest in type 1 isometries is the following point: Ideally
one would like to classify isometries in terms of composition operators. But the
question of what we mean by the term ‘composition’ needs to be clarified. For
example, classical H∞(D) lives inside C(∂H∞) = L∞(T), and hence if in this
context we want to describe isometries in terms of composition operators, we need
to specify composition by what? For a result to earn the title of a true H∞ result,
such composition should be described in terms of point transformations on D rather
than ∂H∞ or T. The papers [36], [20] suggest that for common function algebras
(on domains in C, for example), it is the type 1 isometries between these algebras
which seem to have some hope of being classifiable as composition operators on their
domains (as opposed to on their Shilov boundaries). What makes this work in [36]
is the commutative analogue of our next result (see also the remarks at the end of
this section for a demonstration of this technique of Matheson in a concrete case).
Thus our next result should be useful in the study of particular noncommutative
operator algebras.

Corollary 3.3. Let T : A → B be a left type 1 linear complete isometry between
unital operator algebras such that T (1) commutes with T (a) for all a ∈ A. Then

T (1)T (ab) = T (a)T (b)

for all a, b ∈ A. Therefore if, further, T (1) is invertible, then we may write

T = T (1)θ(·)
for a unital 1-1 ‘completely bicontinuous’ homomorphism θ defined on A, namely
θ = T (1)−1T (·).

Proof. It suffices to show that T (1)T (ab)(1 − p) = T (a)T (b)(1 − p). We obtain
using (*) (see the comment following Theorem 2.2) that

T (1)T (ab)(1− p) = T (1)T (a)T (1)∗T (b)(1− p).
Again using (*), and the fact that T (1) commutes with T (a), we get

T (1)T (ab)(1− p) = T (a)T (1)T (1)∗T (b)(1− p) = T (a)T (b)(1− p).
To see the final assertion, note that in the noncommutative case

T (1)−1T (a)T (1)−1T (b) = T (1)−2T (a)T (1)T (1)−1T (b) = T (1)−1T (ab),

since T (ab) = T (1)−1T (a)T (b). �

Corollary 3.4. Let T : A → B be a left type 1 unital linear complete isometry
between unital operator algebras. Then T is a homomorphism.

Corollary 3.5. Let T : A → B be a left type 1 linear complete isometry between
unital operator algebras. Suppose that T (1A) ∈ ∆(B). Then u = T (1A) is a partial
isometry in C∗e (B), and there exists a completely isometric homomorphism θ : A→
B such that

T = uθ(·) and θ = u∗T (·).

Proof. If we define θ = u∗T (·), then θ : A→ B. Also,

uθ(a)(1− p) = uu∗T (a)(1− p) = T (a)(1− p)
by (*). Since we are in the left type 1 situation, the last equation implies that
T = uθ(·). Similar considerations show that θ is a homomorphism. Similarly, we
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may also conclude from (*) and the left type 1 hypothesis that uu∗u = u, so that
u is a partial isometry in C∗e (B). Then θ is a complete isometry, since for example

‖a‖ = ‖T (a)‖ ≥ ‖u∗T (a)‖ = ‖θ(a)‖ ≥ ‖uθ(a)‖ = ‖T (a)‖ = ‖a‖.
�

Corollary 3.6. Let T : A → B be a left type 1 linear complete isometry between
unital operator algebras. Suppose that 1B ∈ RanT . Then u = T (1A) is a coisom-
etry with u, u∗ ∈ B (that is, u ∈ ∆(B)), and there exists a completely isometric
homomorphism θ : A → B possessing all the properties of the previous corollary.
Also u∗ ∈ θ(A). If, further, T (1A) commutes with T (A) (or even simply with T (a2

0),
where T (a0) = 1B), or if T is also right type 1, then u = T (1) is a unitary of ∆(B),
and θ(1A) = 1B.

Proof. If T (a0) = 1B, then we have ‖a0‖ = 1. As in the first displayed equation in
the proof of Corollary 3.3 (with a = b = a0), we have from (*) that

uT (a2
0)(1 − p) = uT (a0)u∗T (a0)(1 − p) = uu∗T (a0)(1 − p) = T (a0)(1− p).

Thus T (1)T (a2
0) = T (a0) = 1B. Since T (1) and T (a2

0) are contractions on some
Hilbert space, this forces u = T (1) to be a coisometry, and T (a2

0) = T (1)∗. Thus
T (1)∗ ∈ B, and we may apply Corollary 3.5. We have θ(a0) = u∗T (a0) = u∗.

If u = T (1) commutes with T (a2
0) = u∗, then it is clear that u is a unitary.

Similarly, if T is both ‘left-’ and ‘right type 1’, then an argument symmetric to the
above shows that u is an isometry:

(1−q)T (a2
0)T (1) = (1−q)T (a0)u∗T (a0)u = (1−q)T (a0)u∗u = (1−q)T (a0) = (1−q).

Thus T (a2
0)T (1) = 1B, so that u is an isometry, and u is unitary. �

Returning to Corollary 3.3, we note that if, in addition to the hypotheses there,
B is a commutative algebra and T (1) is invertible in B, then the homomorphism θ
in that corollary maps into B, so that A is commutative too. If, in addition, B is
a function algebra, then from Gelfand theory it follows that the homomorphism θ
in that corollary is a contraction. Consequently it is an isometry, since

‖θ(a)‖ ≥ ‖T (1)θ(a)‖ = ‖T (a)‖ = ‖a‖.
Corollary 3.7. Let T : A → B be a left type 1 linear complete isometry between
unital operator algebras, and suppose that B is commutative. If T (A) does not van-
ish identically at any point of the maximal ideal space of B, then A is commutative,
T (1) is invertible in B, and

T = T (1) θ(·)
for a unital completely bicontinuous homomorphism θ : A→ B.

Proof. If χ is a character of B with χ(T (1)) = 0, then by Corollary 3.3 it follows
that χ(T (a)2) = χ(T (1))χ(T (a2)) = 0 for all a ∈ A. Thus χ(T (A)) = 0, which is
a contradiction. By Gelfand theory, T (1) is invertible in B. The rest follows from
the remark before the corollary, and Corollary 3.3. �
Corollary 3.8. Let T : A→ B be a type 1 linear isometry between unital function
algebras, and suppose that B is a closed unital subalgebra of C(K) for a compact
Hausdorff space K. If T (A) does not vanish identically at any point of K, then
T (1) is nonzero at every point in K, and

T = T (1) θ(·)
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for a unital isometric homomorphism θ : A→ C(K).

Proof. The argument in the previous corollary shows that u = T (1) is nonzero on
K, and hence invertible in C(K). The rest follows from the remark before Corollary
3.7. �

There are surely noncommutative versions of the previous two corollaries. One
such result goes as follows:

Corollary 3.9 (cf. [39]). Let T : A→ B be a left type 1 linear complete isometry
between unital operator algebras such that T (1) commutes with T (a) for all a ∈ A.
Suppose that B is a unital subalgebra of B(H), suppose that T (A)H is dense in H,
and suppose that there is a constant K > 0 such that for all ζ ∈ H,

‖ζ‖ ≤ K sup{‖T (a)ζ‖ : a ∈ Ball(A)}.
Then T (1) is an invertible operator on H, and we may write

T = T (1) θ(·)
for a unital ‘completely bicontinuous’ homomorphism θ : A → B(H). If indeed
K = 1, then T (1) is unitary and θ is completely isometric.

Proof. For the first part we need only show that T (1) is invertible, by Corollary
3.3. We have

‖ζ‖ ≤ K2 sup
b∈Ball(A)

sup
a∈Ball(A)

{‖T (a)T (b)ζ‖} ≤ K2‖T (1)ζ‖,

using the fact that T (a)T (b) = T (ab)T (1) from Corollary 3.3. Thus T (1) is bicon-
tinuous and has closed range. Moreover, if K = 1, then T is isometric. However,

T (A)H = T (A)T (A)H ⊂ T (A)T (A)H ⊂ T (1)H

(by continuity and the fact that T (a)T (b) = T (1)T (ab)). So T (1) maps onto H .
Thus T (1) is invertible. We leave the rest to the reader. �

We end Part I by describing very briefly some results found together with Alec
Matheson. These are applications of the ideas above, in an attempt to gain insight
into the difficult open problems concerning isometries T : A → A, where A =
H∞(D) and D is the open unit disk. We first remark that it is easy to characterize
contractive homomorphisms of H∞(D), by the methods of p. 144 in [25]. These
are exactly the composition operators T (f) = f ◦ τ on D, for a τ ∈ Ball(H∞(D)).
If T is also an isometry, then one can say quite a bit more about τ . Then, using the
ideas above, one can show that a general type 1 isometry T : H∞(D)→ H∞(D) is
of the form T (f) = T (1) f ◦ τ on D, for all f ∈ H∞(D), and where τ is as above
(i.e., the map f 7→ f ◦ τ is an isometric homomorphism on H∞(D)).

Leaving the type 1 case, and considering general unital isometries T : H∞(D)→
H∞(D), we note first that because the injective envelope and triple envelope of
H∞(D) coincide with L∞(T) (see the Remark before Definition 5.5 below), any such
T extends to a unital isometry T̃ : L∞(T)→ L∞(T). We obtain from Theorem 1.1
a closed ideal I in L∞(T), as in that theorem. We let J = H∞(D) ∩ I. Denoting
by qI and qJ respectively the canonical quotient maps L∞(T) → L∞(T)/I and
H∞(D) → H∞(D)/J , we have that qJ ◦ T is an isometric homomorphism, and
qI ◦ T̃ is a 1-1 *-homomorphism (all this in fact is true in much greater generality).
Let ı and τ respectively denote the functions ı : z → z and T (ı) on D. Then τ = T (ı)
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is a self-map on D which induces a composition operator Cτ : H∞ → H∞ : f 7→
f ◦ τ , which approximates the action of T modulo the ideal J in many senses. For
example, qJ◦Cτ agrees with qJ◦T on the disk algebra. Then if {δz : z ∈ D, δz ∈ J⊥}
is weak* dense in M(H∞)∩J⊥ (where M(H∞) denotes the maximal ideal space of
H∞), then the operators qJ ◦Cτ and qJ ◦T agree on all of H∞. In this connection
we remark that the famous Carleson Corona Theorem [14] guarantees the weak*
density of {δz : z ∈ D} in the maximal ideal space M(H∞) of H∞, so that our
condition seems interesting. Indeed, Carleson’s theorem in this form gives another
route to the characterization of unital type 1 isometries mentioned in the previous
paragraph. This is work in progress, and details will be forthcoming.

Part II. Logmodularity and the C∗-envelope

4. Logmodularity and representing measures

A Dirichlet algebra is a unital subalgebra of C(K) such that A+Ā is norm dense
in C(K), where here Ā denotes the set of adjoints of A. It follows that A separates
points of K, and thus, as is proved in most books on uniform algebras, K = ∂A, the
Shilov boundary of A. We therefore define a (noncommutative) Dirichlet algebra to
be a unital subalgebra A of a unital C∗-algebra B, such that Re(A) is norm dense
in Bsa. This is easily seen to be equivalent to A+A∗ being norm dense in B.

In order to define a noncommutative version of logmodularity, we will first recall
a few basic facts about C∗-algebras. First, in a unital C∗-algebra, an element a
is strictly positive if and only if it is positive and invertible, and if and only if
b ≥ εI for some real ε > 0. It will be helpful also to recall the following fact (which
may be proved, for example, with the assistance of [41], 1.3.8): If b is a strictly
positive element in a unital C∗-algebra, and if an is a sequence of positive elements
in the algebra, then an → b uniformly (i.e., in the norm topology) if and only if√
an →

√
b.

We now proceed to define several related concepts, valid for a unital subalgebra
A of a unital C∗-algebra B. First, we say that A has factorization, if each strictly
positive b ∈ B may be written as a∗a for some a ∈ A−1. This notion has been
studied by many authors (e.g., [44], [46]). Next, we say that A is left approximating
in modulus (resp. left convexly approximating in modulus) if every positive b ∈ B is
a uniform limit of terms of the form a∗a for an a ∈ A (resp.

∑n
k=1 a

∗
kak for ak ∈ A,

n varying too). Thus if P = {a∗a : a ∈ A} ⊂ B+, then A is left approximating
in modulus (resp. left convexly approximating in modulus) if and only if P̄ = B+

(resp. co{P} = B+). The word ‘left’ here refers to the preference of products a∗a
as opposed to aa∗; thus right approximating in modulus means that each positive
b ∈ B is a uniform limit of terms of the form aa∗ for a ∈ A. If the word left or
right is omitted, then we mean that both left and right hold.

We define a (noncommutative) logmodular algebra to be a unital subalgebra A of
a unital C∗-algebra B such that every strictly positive element b ∈ B is a uniform
limit of terms of the form a∗a, where a ∈ A−1.

Some well-known results for algebras with ‘factorization’ carry over to the ‘log-
modular case’:

Proposition 4.1. Let A be a unital subalgebra of a unital C∗-algebra B. The
following are equivalent:
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(i) A has factorization, i.e., every strictly positive element b ∈ B may be fac-
tored b = a∗a for some a ∈ A−1.

(ii) Every strictly positive element b ∈ B equals |a| for some a ∈ A−1.
(iii) Every b ∈ B−1 equals u|a| for an a ∈ A−1 and a unitary u ∈ B (in fact, u

may be taken to be the unitary in the polar decomposition of b).
(iv) Every b ∈ B−1 equals ua for an a ∈ A−1 and a unitary u ∈ B.

Consequently, if A has factorization, and if b ∈ B−1, then bAb−1 = uAu∗ for a
unitary u ∈ B.

Also the following are equivalent:
(i)′ A is logmodular.
(ii)′ Every strictly positive element b ∈ B is a uniform limit of terms of the form

|a| for a ∈ A−1.
(iii)′ Every b ∈ B−1 is a uniform limit of terms of the form u|a|, where a ∈ A−1

and u is a unitary in B (in fact, u may be taken to be the unitary in the
polar decomposition of b).

(iv)′ Every b ∈ B−1 is a uniform limit of terms of the form ua, where a ∈ A−1

and u is a unitary in B.

Proof. That (i) is equivalent to (ii) is obvious, whereas the fact that (i)′ is equivalent
to (ii)′ follows from the remarks made in the second paragraph of this section.

If b ∈ B−1, then b∗b ∈ B−1. Thus b∗b, and consequently |b|, is strictly positive.
We may polar decompose b = u|b|, with u a unitary in B. Supposing (i) to be true,
we may write b∗b = a∗a for a ∈ A−1, giving b = u|a|, and thereby establishing (iii).
Given (iii), if a = w|a| is the polar decomposition of a, then b = uw∗a, giving (iv).
Given (iv) and a strictly positive b, then

√
b = ua for an a ∈ A−1 and unitary u,

so that b = a∗a as in (i). The other assertions are similarly proved. �
Parts (i)-(iv) are essentially in [5], [44] (see section 4.2 in [5] for example, where

it is explained that the u in (iv) is unique in a certain sense).
There seems to be a concept situated somewhere between logmodularity and

convexly approximating in modulus (see [13]): we say that a uniformly closed
unital subalgebra A of a unital C∗-algebra B is logrigged if every strictly positive
element b ∈ B is a uniform limit of terms of the form

∑n
k=1 a

∗
kak, with ak ∈ A,

and n varying too, where there exists bk ∈ A with
∑n
k=1 bkak = 1, and with the

expressions
∑n

k=1 bkb
∗
k converging uniformly to b−1. By the remark in the second

paragraph at the start of this section, this is equivalent to saying that every strictly
positive b ∈ B is a uniform limit of terms (

∑n
k=1 a

∗
kak)

1
2 , and b−1 is a uniform limit

of (
∑n

k=1 bkb
∗
k)

1
2 , where ak, bk ∈ A with

∑n
k=1 bkak = 1 (n varying too).

As yet we have not been able to construct an example of an algebra that is
logrigged but not logmodular. Nonetheless, since several of our proofs below are
not more difficult for logrigged algebras than for logmodular algebras, we will state
these results for the former class.

There are various relationships between these notions, some of which are trivial
(e.g., ‘approximating in modulus’ ⇒ ‘convexly approximating in modulus’). The
main implications to bear in mind are:

Proposition 4.2. If A is a unital subalgebra of a unital C∗-algebra, then we have
the following implications:

‘Factorization’ ⇒ ‘logmodular’ ⇒ ‘logrigged’ ⇒ ‘convexly approximating in mod-
ulus’.
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Proof. The proofs of the first two implications are trivial. To see the last implica-
tion, one needs to note also that if b ∈ B, b ≥ 0, then the terms b+ 1

n1 are strictly
positive and converge uniformly to b. �

Remarks and examples. 1). For a function algebra A, the definitions above coincide
with the classical ones. ‘Factorization’ is sometimes called ‘strongly logmodular’.
The term ‘convexly approximating in modulus’ was used in the function algebra
case by Douglas and Paulsen.

2). The condition in the definition of a (noncommutative) logmodular algebra
that every strictly positive b is a uniform limit of terms of the form a∗a implies that
every strictly positive b is a uniform limit of terms aa∗. This follows by replacing
b with b−1, and noting that the inverse of aa∗, if a is invertible in A, is (a−1)∗a−1.
Thus the ‘logmodular’ condition is more symmetric than it appears at first sight,
and there is no need to consider ‘left’ or ‘right’ logmodular.

A similar remark holds for the ‘factorization’ and ‘logrigged’ definitions.
3). The algebra of n× n upper triangular matrices is Dirichlet, and is known to

have factorization (this is the Choleski factorization). Thus it is logmodular. This
can be generalized to certain nest algebras (see e.g. [44], [46]). The H∞ algebras
of [49] and their noncommutative generalization in [5] have factorization.

4). Logmodular and logrigged algebras usually furnish examples of the strong
Morita equivalence of the first author with Muhly and Paulsen, as may be seen by
the ideas in [13] (see e.g. the end of Section 6 there).

Proposition 4.3. Suppose that A is a unital subalgebra of a unital C∗-algebra B,
which either is Dirichlet, or is left or right convexly approximating in modulus.
Then B = C∗e (A).

Proof. The ‘Dirichlet’ assertion is in [6], but in any case is immediate: namely, the
canonical *-epimorphism B → C∗e (A) is, by Lemma 1.2, an isometry and therefore
is 1-1.

Suppose that A is left convexly approximating in modulus (the ‘right’ case will
be similar). By the Arveson-Hamana theorem mentioned in the introduction, there
is a *-homomorphism π from B onto C∗e (A). Let I be the kernel of π; we will
show that I = {0}. Let q be the canonical map q : A → B/I, factoring through
the canonical maps A → B

qI→ B/I. Since the complete isometry π|A = j factors
through q, it follows that q is a complete isometry.

Suppose that b ∈ I with b ≥ 0. Then b is a limit of terms of the form
∑n

k=1 a
∗
kak,

and hence qI(b) is the limit of terms
∑n

k=1 qI(ak)∗qI(ak) =
∑n

k=1 q(ak)∗q(ak), since
qI is a *-homomorphism. Also, ‖b‖ is a limit of terms ‖

∑n
k=1 a

∗
kak‖. However, the

last quantity is the square of the norm of the column in the column-space Cn(A)
(that is, the operator space given by the first column of Mn(A)) whose kth entry
is ak. Since q is a complete isometry, this norm coincides with the square of the
norm of the column in Cn(B/I) whose kth entry is q(ak). Thus

‖b‖ = lim ‖
n∑
k=1

q(ak)∗q(ak)‖ = ‖qI(b)‖ = 0.

Clearly b = 0, which implies that I = {0}. �
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Below we use the fact, alluded to in the introduction, that a unital linear map S
between operator systems (or unital C∗-algebras) is completely contractive if and
only if it is completely positive, in which case it is *-linear, i.e., S(v∗) = S(v)∗.

Theorem 4.4. Suppose that A is either a Dirichlet or a logrigged subalgebra of
a unital C∗-algebra B. Then any unital completely contractive (resp. completely
isometric) homomorphism ϕ : A→ B(H) admits a unique extension to a completely
positive and completely contractive (resp. completely isometric) map B → B(H).
More generally, if C is a unital operator algebra and if ϕ : A → C is a unital
contractive homomorphism which possesses an extension to a completely positive
map B → C, then that extension is unique.

Proof. In the Dirichlet algebra case the claim regarding the existence of an extension
follows immediately from Lemma 1.2. So assume that A is logrigged. By the
injectivity of B(H), there does exist a completely positive extension to B.

To prove the claim regarding uniqueness, suppose that Φ and Ψ are two com-
pletely positive extensions of ϕ : A→ C to all of B. Since C is a unital subalgebra
of some B(H), it suffices to consider only the case C = B(H). Let ξ be a unit
vector in H , and suppose that ak, bk ∈ A with

∑n
k=1 bkak = 1. Then

1 = 〈ξ, ξ〉 = 〈ϕ(
n∑
k=1

bkak)ξ, ξ〉 =
n∑
k=1

〈Φ(bk)Ψ(ak)ξ, ξ〉.

Using the Cauchy-Schwarz inequality in a standard way yields

1 ≤ 〈
n∑
k=1

Ψ(ak)∗Ψ(ak)ξ, ξ〉 〈
n∑
k=1

Φ(bk)Φ(bk)∗ξ, ξ〉,

which by the Kadison-Schwarz inequality (see [19], 5.2.2) gives

1 ≤ 〈Ψ(
n∑
k=1

a∗kak)ξ, ξ〉 〈Φ(
n∑
k=1

bkb
∗
k)ξ, ξ〉.

Since A is logrigged, this yields

1 ≤ 〈Ψ(b)ξ, ξ〉 〈Φ(b−1)ξ, ξ〉
for all strictly positive b ∈ B. Writing b = eu for u ∈ Bsa, we may then replace u
by tu for real t, to obtain

1 ≤ 〈Ψ(etu)ξ, ξ〉 〈Φ(e−tu)ξ, ξ〉.
Let f(t) = 〈Ψ(etu)ξ, ξ〉 〈Φ(e−tu)ξ, ξ〉, and differentiate as in the classical proof (see
e.g. 17.1 in [50]). We get f ′(0) = 0, which gives 〈Ψ(u)ξ, ξ〉 = 〈Φ(u)ξ, ξ〉. Hence
Ψ(u) = Φ(u) for all selfadjoint u ∈ B. From this the claim regarding uniqueness of
extensions is clear.

If ϕ is completely isometric, then so is any extension of it to B by the ‘essential’
property of C∗e (A) (see [22]). �

Remark. There is a version of the above result for general unital contractions. In
the Dirichlet case, essentially the same argument shows that such a map admits a
unique positive extension to all of B. In proving the uniqueness of extension in the
logrigged case, note that we only used the fact that Φ and Ψ are continuous and
satisfy the Kadison-Schwarz inequality Φ(x)∗Φ(x) ≤ Φ(x∗x) for all x ∈ A ∪A∗.
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Corollary 4.5. Suppose that A is a Dirichlet or logrigged subalgebra of a unital
C∗-algebra B. Then (on relaxing the irreducibility requirement in [6]) every *-
representation of B is a ‘boundary representation’ for A in the language of [6].

Recall that in the commutative situation, the irreducible boundary representa-
tions of a uniform algebra A ⊂ C(K) are precisely the point evaluations εx for
x ∈ K whose restrictions to A possess a unique representing measure. Such points
x comprise precisely the Choquet boundary of A, and the closure of the Choquet
boundary is the Shilov boundary. Since the ‘representing measures’ above are pre-
cisely completely positive maps extending the restriction of εx to A, it is clear that
our last corollary may be interpreted as saying in some sense that for a Dirichlet
or logrigged algebra, “the noncommutative Choquet boundary equals the Shilov
boundary”. In this connection we remark too that from the last corollary and facts
in [6] one may deduce that B has the universal property of C∗e (A), without having
to use Hamana’s theory.

Suppose that A is a unital subalgebra of a unital C∗-algebra B. Then if x ∈
B−1, the algebra xAx−1 is also a unital subalgebra of B, called a similarity of A.
Similarity obviously does not arise in the commutative case, but it is very natural
in the noncommutative case.

One question which seems interesting is the following: if B is the C∗-envelope
of A (that is, if {0} is the ‘Shilov boundary ideal’ in B for A), and if x is invertible
in B, then what is the C∗-envelope of xAx−1? Note that the C∗-subalgebra of
B generated by xAx−1 need not be B. (For an example of this, let A be the
subalgebra of M2 generated by I2 and the matrix with first row having equal entries
and second row composed of zeroes. This is similar to the diagonal two-dimensional
C∗-algebra.) However, in a special case there is a nice answer:

Proposition 4.6. If A is a unital subalgebra of a unital C∗-algebra B, and if
x ∈ B−1, then xAx−1 has factorization (resp. is logmodular) if and only if A has
factorization (resp. is logmodular). If A has factorization or is logmodular, then
C∗e (xAx−1) = B for all x ∈ B−1.

Proof. Suppose that A has factorization, and x ∈ B−1. By Proposition 4.1,
xAx−1 = uAu∗ for a unitary u ∈ B. If b is a strictly positive element of B,
then u∗bu is strictly positive, and so equals a∗a for a ∈ A−1. Thus b = ua∗au∗ =
(uau∗)∗(uau∗), so that xAx−1 = uAu∗ has factorization.

Next suppose that A is logmodular. In this case we know that x = limn unan,
where un is unitary in B and an ∈ A−1; and it follows that limn a

−1
n u∗n = x−1,

and that {‖a−1
n ‖} is bounded above. If b is strictly positive in B, then for any

fixed n ∈ N we have u∗nbun = limm(anm)∗anm, for some {anm}m ⊂ A−1, so that
b = limm(unanmu

∗
n)∗(unanmu

∗
n). Since ‖u∗nbun‖ = ‖b‖ for every n, we may select

the anm’s so that the entire collection {anm}n,m is uniformly bounded. Thus if cnm =
a−1
n anman ∈ A−1, then the collection {cnm}n,m is uniformly bounded, and it follows

that there exist constants K1 and K2 such that

‖unancnma−1
n u∗n − xcnmx−1‖ ≤ K1‖unan − x‖+K2‖a−1

n u∗n − x−1‖,
and so, by a triangle inequality argument,

b = lim
n

lim
m

(unancnma
−1
n u∗n)∗(unancnma

−1
n u∗n) = lim

n
lim
m

(xcnmx
−1)∗(xcnmx

−1),

where cnm ∈ A−1. Thus xAx−1 is logmodular.
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The assertion about the C∗-envelope follows immediately from Proposition 4.3.
�

5. Conditional expectations and noncommutative H∞ spaces

We begin this section with a result on conditional expectations which we think is
new. It is a well-known result due to Tomiyama (see [54]) that a unital contractive
projection from a unital C∗-algebra A onto a unital subalgebra B is completely
contractive, and moreover is a ‘conditional expectation’ in the sense that

P (b1ab2) = b1P (a)b2
for all a ∈ A, b1, b2 ∈ B.

Proposition 5.1. A completely contractive unital projection of a unital operator
algebra A onto a unital subalgebra B is a ‘conditional expectation’ in the sense that

P (b1ab2) = b1P (a)b2
for all a ∈ A, b1, b2 ∈ B.

Proof. Let P : A → B be the projection. Let i : B → A be the inclusion. We
will use the basic properties of the injective envelope, as may be found in [22], [19]
say. Let (I(A), J) and (I(B), j) be the injective envelopes of A and B respectively,
which may be chosen to be unital C∗-algebras, with J, j unital completely isometric
homomorphisms. We may extend j◦P ◦J−1 to a completely contractive unital map
P̃ : I(A)→ I(B) with P̃ ◦J = j ◦P . We may also extend J ◦ i◦ j−1 to a completely
contractive unital map ĩ : I(B) → I(A), with ĩ ◦ j = J ◦ i. Thus P̃ ◦ ĩ = Id on
j(B), and hence, by the rigidity property of the injective envelope, P̃ ◦ ĩ = Id on
I(B). Thus Q = ĩ ◦ P̃ is a unital completely contractive projection from I(A) onto
a subspace of I(A) which is completely order isomorphic to the C∗-algebra I(B).
We have for b ∈ B, a ∈ A that

Q(J(a)) = ĩ(P̃ (J(a))) = ĩ(j(P (a)) = J(P (a)),

and thus

J(P (ba)) = Q(J(ba)) = Q(J(b)J(a)) = Q(J(b)Q(J(a))),

where the last step uses a well-known lemma of Choi and Effros (see the proof of
6.1.2 in [19]). It follows from the last displayed equations (used three times) that

J(P (ba)) = Q(J(bP (a))) = J(P (bP (a))) = J(bP (a)),

from which the result is clear. �

Remark. The above proof provides an extension of P to a completely positive
surjective map P̃ : I(A) → I(B). One can say a little more. We use the notation
of the proof above. First, if C∗(J(B)) is the C∗-algebra generated by J(B) inside
C∗e (A) ⊂ I(A), then P̃ is a *-homomorphism from C∗(J(B)) onto C∗e (B). To see
this, note that ĩ is a complete order isomorphism from I(B) onto RanQ. Hence ĩ
is a *-isomorphism. That is, ĩ(j(b1)j(b2)∗ · · · j(bn)) = Q(J(b1)J(b2)∗ · · · J(bn)), or
in other words,

P̃ (J(b1)J(b2)∗ · · ·J(bn)) = j(b1)j(b2)∗ · · · j(bn)

for b1, · · · , bn ∈ B. Thus indeed P̃ is a *-homomorphism C∗(J(B))→ C∗e (B), and
P̃ (C∗(J(B))) = C∗e (B). Therefore also Q(C∗(J(B))) = ĩ(C∗e (B)). It follows from
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a well-known lemma of Choi that P̃ (a1xa2) = P̃ (a1)P̃ (x)P̃ (a2), for x ∈ I(A) and
a1, a2 ∈ C∗(J(B)).

We also remark that almost all of the above is true with the same proof, even if
B = P (A) is not a subalgebra of A. The only change is that we must amend the
displayed equation in the proposition to read

P (a1P (a2)) = P (P (a1)a2) = P (P (a1)P (a2))

for all a1, a2 ∈ A.

The following result was originally stated by Le Merdy [31] (see also 3.4 and
3.5 in [32]) with the additional hypothesis of ‘separate weak* continuity’ of the
product. This hypothesis was removed by the first author in [11]. However, in fact,
Proposition 5.1 gives a much simpler way to remove the hypothesis.

Corollary 5.2 (Le Merdy and Blecher). If A is a unital operator algebra with
an operator space predual, then A is completely isometrically isomorphic, via a
homomorphism which is also a homeomorphism for the weak* topologies, to a σ-
weakly closed unital subalgebra of B(H), for some Hilbert space H.

Proof. We mimic Tomiyama’s slick proof of Sakai’s theorem [54]. The dual of the
canonical map i : A∗ → A∗ dualizes to a weak* continuous completely contractive
unital projection P : A∗∗ → A. Let J = Ker P , a weak* closed subspace of A∗∗.
Then P is a conditional expectation (by the proposition), so that J is an Â-Â-
subbimodule of A∗∗. Since the product onA∗∗ is separately weak* continuous, J is a
2-sided ideal of A∗∗. Also, if F,G ∈ A∗∗, then F−P (F ) ∈ J , so that FG−P (F )G ∈
J . Thus P (FG) = P (P (F )G) = P (F )P (G). Thus P is a homomorphism. By
elementary Banach space duality principles we obtain a completely isometric unital
surjective weak* continuous homomorphism from A∗∗/J onto A. By the Krein-
Smulian theorem, this homomorphism is a homeomorphism for the weak* topologies
(which implies that the multiplication on A is separately weak* continuous). The
result now follows from a part of Le Merdy’s earlier result (one which was also
independently proved in [4]). �

In passing, we remark that if one could show that Proposition 5.1 holds with
the word ‘completely’ deleted, then the proof of Corollary 5.2 would give a purely
Banach algebraic characterization of σ-weakly closed operator algebras.

We now discuss a situation related to logmodularity/factorization in which con-
ditional expectations naturally arise. Let A be a unital subalgebra of a unital
C∗-algebra B. Using classical H∞(D) as a model, we may take ∆(A) = A ∩ A∗
to be a noncommutative analogue of the complex scalar field. A comparison of
this context with the commutative setting (see for example [21], chapter IV) sug-
gests that at least one possible approach to a noncommutative theory of Hardy
spaces would be in terms of some fixed homomorphism ϕ : A → ∆(A) = A ∩ A∗
which is also a projection of A onto ∆(A). An extension of such a homomorphism
to a positive projection from all of B onto ∆(A) may then be regarded as some
sort of noncommutative representing measure of ϕ. The questions of existence and
uniqueness of such “representing measures” and the possible role of logmodularity
in ensuring these eventualities immediately present themselves.

Let M be a von Neumann algebra possessing a faithful normal tracial state τ
(which implies that M is a ‘finite von Neumann algebra’). We say that τ preserves
a map Φ : S ⊂M →M if τ ◦ Φ = τ on the domain S of Φ.
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Lemma 5.3. For a unital ∗-algebra M with a faithful state τ and a unital *-
subalgebra N , there is at most one unital ‘conditional expectation’ from any unital
N -invariant subset S of M containing N , onto N , which is preserved by τ .

By ‘N -invariant’ we mean that NSN ⊂ S, and by ‘conditional expectation’ here
we mean that Φ(asb) = aΦ(s)b for all a, b ∈ N, s ∈ S. Since N is unital, the fact
that Φ is such a conditional expectation can be shown to imply that Φ preserves
the identity and also that Φ ◦Φ = Φ.

Proof. Suppose that Ψ is another ‘conditional expectation’ of S onto N that is
preserved by τ . Then, using the conditional expectation property, we have for
a ∈ S that

τ(|Φ(a) −Ψ(a)|2)

= τ(Φ(a)∗Φ(a))− τ(Φ(a)∗Ψ(a))− τ(Ψ(a)∗Φ(a)) + τ(Ψ(a)∗Ψ(a))

= τ(Φ(Φ(a)∗a))− τ(Ψ(Φ(a)∗a))− τ(Φ(Ψ(a)∗a)) + τ(Ψ(Ψ(a)∗a))

= τ(Φ(a)∗a)− τ(Φ(a)∗a)− τ(Ψ(a)∗a) + τ(Ψ(a)∗a)
= 0.

Since τ is faithful, this shows that Ψ = Φ on S. �

We turn now to Arveson’s remarkable noncommutative generalization of the H∞

spaces. Let M be a von Neumann algebra with a faithful normal tracial state τ , and
suppose that A is a weak* closed unital subalgebra of M . Then ∆(A) = A ∩ A∗
is a von Neumann subalgebra, and it is known ([52]; V.2.36) that there exists a
faithful normal conditional expectation Φ of M onto ∆(A) that is preserved by τ .
We say that A is a finite maximal subdiagonal algebra1, or a noncommutative H∞

space, if, further, A+A∗ is weak*-dense in M and Φ is multiplicative on A. So in
the philosophy of the above discussion, Φ is in effect a representing measure of its
restriction to A.

Many examples of finite maximal subdiagonal algebras are given in [5], [34],
[35], for example. See also the appropriate chapter in [43] for a recent survey of
subdiagonal algebras. The weak* Dirichlet algebras of [49] may be shown to all be
finite maximal subdiagonal algebras (one may show that in this case ∆(A) = C1).
If A is a finite maximal subdiagonal algebra, then so is Mn(A). In [5] it is shown
that any finite maximal subdiagonal algebra has factorization. It is consequently
logmodular, and we may apply the results proved in Section 4 above. From this
and Proposition 4.3 we may deduce the following generalization of a well-known
fact for classical H∞(T):

Proposition 5.4. If A is a finite maximal subdiagonal algebra in M , then M =
C∗e (A). That is, {0} is the noncommutative Shilov boundary ideal in M of A.

Remark. It is well known that every commutative von Neumann algebra M is an
injective Banach space, and is hence an injective operator space. In this case we
can say, under the hypotheses of the previous corollary, that M is the ‘injective
envelope’ of A too. (This follows easily from abstract principles in [22] or [19].)
This is interesting, because there are few cases where the injective envelope of an
operator space is explicitly known.

1The simplified form of the definition is due to Exel.
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Definition 5.5. Let M be a von Neumann algebra with a faithful normal tracial
state τ . A tracial subalgebra of M is a weak* closed unital subalgebra A of M for
which there exists a linear projection Ψ from A onto ∆(A) = A ∩A∗ that is also a
homomorphism on A, such that τ(a) = τ(Ψ(a)) for all a ∈ A.

Theorem 5.6. Let A be a tracial subalgebra of a von Neumann algebra M . Then
the map Ψ in Definition 5.5 is unique, completely contractive, and weak* continu-
ous. Indeed, Ψ is the restriction to A of the canonical conditional expectation of M
onto ∆(A) that is preserved by τ . Furthermore,

(1) If A + A∗ is weak* dense in M , then A is a finite maximal subdiagonal
algebra in M . Thus A will then have factorization, and will be logmodular.

(2) If A is logmodular or logrigged, then the canonical conditional expectation
from M onto ∆(A) is the only positive extension of Ψ to a map from M
into C, for any C∗-algebra C containing (a C∗-algebra ∗–isomorphic to)
∆(A).

Proof. The conditional expectation from M onto ∆(A) restricts to a ‘conditional
expectation’ from A onto ∆(A). Clearly Ψ is a ‘conditional expectation’ from A
onto ∆(A). The first claim then follows by Lemma 5.3, as does (1).

To see (2), note that by the remark following Theorem 4.4 we only need to
verify that each positive extension of Ψ satisfies the Kadison-Schwarz inequality
on A ∪ A∗. To this end, let C be a unital C∗-algebra, let j : ∆(A) → C be
a unital 1-1 *-homomorphism, and let Φ : M → C be any positive extension
of j ◦ Ψ to all of M . For simplicity the reader may want to take C = M and
j = Id in the following. By taking adjoints we may conclude from Ψ’s action
on A that Φ is unital, that it maps A + A∗ into j(∆(A)), satisfies the equality
Φ ◦ j−1 ◦ Φ|A+A∗ = Φ|A+A∗ , and also acts homomorphically on both A and A∗.
Therefore on expanding the term (x∗ − j−1Φ(x∗))(x − j−1Φ(x)) ≥ 0 and applying
Φ, it follows that Φ(x∗x) ≥ Φ(x∗)Φ(x) for each x ∈ A ∪A∗, as required. �

We close our paper with an open problem: If A is a logrigged or logmodular
tracial subalgebra, when is A∗ + A automatically weak* dense in the ambient von
Neumann algebra? We recall that in the setting of commutative weak* Dirichlet
algebras considered by Srinivasan and Wang, it is known that logmodularity and
the weak* density of A∗ +A in L∞ are equivalent.

We will give a result which probably is in the right direction towards the solution
of this problem. In the commutative context of Srinivasan and Wang and other
authors, one first proves L2-density of A∗ + A, before combining Szegö’s theorem
with this fact to conclude that in fact weak* density of A∗+A in L∞ pertains. See
also [33], where this is linked very tightly to the principle of Theorem 4.4. Thus
our question seems tied to the open problems surrounding the apparent absence
of a suitable version of ‘Jensen’s inequality’ and ‘Szegö’s theorem’ in the general
noncommutative case (see [5], [35], and references contained therein). A weaker
version of the aforementioned open problem may therefore be formulated as follows:
Is weak* density of A∗ + A in the ambient von Neumann algebra equivalent to
logmodularity of A for all tracial algebras A that satisfy a noncommutative Szegö
theorem in the sense described in 4.4 of [5]?

Proposition 5.7. Let A be a logrigged tracial subalgebra of a von Neumann algebra
M , with ∆(A) contained in the center of M . Then A + A∗ is a dense subspace of
L1(M, τ).
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Proof. Suppose, by way of contradiction, that A satisfies the hypotheses of the
proposition, but that A∗ + A is not dense in L1(M, τ). By the Hahn-Banach
theorem and the duality of noncommutative Lp-spaces (see e.g. [53]), we would
be able to find some x ∈ M with x 6= 0 and τ(xa) = 0 for all a ∈ A∗ + A. By
taking adjoints it is easy to see that τ(xa) = 0 for all a ∈ A∗ + A if and only if
τ((x + x∗)a) = 0 and τ((i(x∗ − x))a) = 0 for all a ∈ A∗ + A. We may therefore
assume x to be a selfadjoint element of M , and, on suitably scaling x, even that
‖x‖∞ ≤ 1. Then 1 + x is a positive element of M .

If d ∈ ∆(A) and a ∈ A∗ +A, then

τ(Φ(xa)d) = τ(Φ(xad)) = τ(xad) = 0.

Since this holds for all d ∈ ∆(A), we may conclude that Φ(xa) = 0 for a ∈ A∗ +A.
Consider the linear map Ψ : a 7→ Φ((1 + x)a) on M . This coincides with Φ on A.
If d ∈ ∆(A) and a ∈M , then, using the conditional expectation property, the fact
that τ preserves Φ, and the facts that d is in the center and τ is a trace, we have

τ(d∗Φ((1 + x)a∗a)d) = τ(Φ(d∗(1 + x)a∗ad)) = τ(d∗a(1 + x)a∗d) ≥ 0.

Since this holds for all d ∈ ∆(A), it follows by elementary considerations that
Φ((1 + x)a∗a) ≥ 0. Thus Ψ is positive, and therefore completely positive, seeing as
its range is commutative [40]. It follows from Theorem 4.4 that Φ((1 +x)a) = Φ(a)
for all a ∈M . Thus Φ(xM) = 0, which implies that Φ(x2) = 0. Since Φ is faithful,
this gives the contradiction x = x2 = 0. �
Acknowledgments. We thank Alec Matheson for drawing our attention to the
area discussed in Part I above, and for helpful discussions and clarifications. We
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Added in proof. For additional background and a survey of topics connected with
Theorem 2.2, see [56], [57].

References

[1] M. Anoussis and E. G. Katsoulis, Compact Operators and the Geometric Structure of Nest
Algebras, Indiana. Univ. Math. J. 46 (1997), 319-336. MR 98e:47066b

[2] J. Araujo and J. J. Font, Linear isometries between subspaces of continuous functions, Trans.
Amer. Math. Soc. 349 (1997), 413-428. MR 97d:46026

[3] J. Arazy and B. Solel, Isometries of nonselfadjoint operator algebras, J. Funct. Anal. 90
(1990), 284-305. MR 91c:47085

[4] A. Arias and G. Popescu, Noncommutative interpolation and Poisson transforms, Israel J.
Math. 115 (2000), 205-235. MR 2001f:47021

[5] W. B. Arveson, Analyticity in operator algebras, Amer. J. Math. 89 (1967), 578-642. MR
36:6946

[6] W. B. Arveson, Subalgebras of C∗-algebras, Acta Math. 123 (1969), 141-22. MR 40:6274
[7] W. B. Arveson, Subalgebras of C∗-algebras II, Acta Math. 128 (1972), 271-308. MR 52:15035
[8] D. P. Blecher, Commutativity in operator algebras, Proc. Amer. Math. Soc. 109 (1990),

709-715. MR 90k:46128
[9] D. P. Blecher, Modules over operator algebras and the maximal C∗-dilation, J. Funct. Anal.

169 (1999), 251-288. MR 2000j:47122
[10] D. P. Blecher, The Shilov boundary of an operator space, and the characterization theorems,

J. Funct. Anal. 182 (2001), 280-343. MR 2002d:46049
[11] D. P. Blecher, Multipliers and dual operator algebras, J. Funct. Anal. 183 (2001), 498-525.

[12] D. P. Blecher and D. Hay, Complete isometries into C∗-algebras, preprint (March ’02),
http://front.math.ucdavis.edu/math.OA/0203182 .

[13] D. P. Blecher and K. Jarosz, Isomorphisms of function modules, and generalized approxima-
tion in modulus, Trans. Amer. Math. Soc. 354 (2002), 3663-3701.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=98e:47066b
http://www.ams.org/mathscinet-getitem?mr=97d:46026
http://www.ams.org/mathscinet-getitem?mr=91c:47085
http://www.ams.org/mathscinet-getitem?mr=2001f:47021
http://www.ams.org/mathscinet-getitem?mr=36:6946
http://www.ams.org/mathscinet-getitem?mr=40:6274
http://www.ams.org/mathscinet-getitem?mr=52:15035
http://www.ams.org/mathscinet-getitem?mr=90k:46128
http://www.ams.org/mathscinet-getitem?mr=2000j:47122
http://www.ams.org/mathscinet-getitem?mr=2002d:46049


LOGMODULARITY AND ISOMETRIES OF OPERATOR ALGEBRAS 1645

[14] L. Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. of
Math. 76 (1962), 547-559. MR 25:5186

[15] M. D. Choi and E. G. Effros, The completely positive lifting problem for C∗-algebras, Ann.
of Math. 104 (1976), 585-609. MR 54:5843

[16] C-H. Chu and N-C. Wong, Isometries between C∗-algebras, Rev. Mat. Iberoamericana, to
appear.

[17] J. B. Conway, A Course in Operator Theory, Amer. Math. Soc., Providence, RI, 2000. MR
2001d:47001

[18] E. G. Effros and Z. J. Ruan, On non-self-adjoint operator algebras, Proc. Amer. Math. Soc.
110 (1990), 915-922. MR 91c:47086

[19] E. G. Effros and Z. J. Ruan, Operator Spaces, Oxford University Press, Oxford, 2000. MR
2002a:46082

[20] M. El-Gebeily and J. Wolfe, Isometries of the disk algebra, Proc. Amer. Math. Soc. 93 (1985),
697-702. MR 86j:46058

[21] T. W. Gamelin, Uniform Algebras, 2nd ed., Chelsea, New York, 1984. MR 53:14137 (1st
ed.)

[22] M. Hamana, Injective envelopes of operator systems, Publ. Res. Inst. Math. Sci. 15 (1979),
773-785. MR 81h:46071

[23] M. Hamana, Triple envelopes and Silov boundaries of operator spaces, Math. J. Toyama

Univ. 22 (1999), 77-93. MR 2001a:46057
[24] K. Hoffman, Analytic functions and logmodular Banach algebras, Acta Math. 108 (1962),

271-317. MR 26:6820
[25] K. Hoffman, Banach spaces of analytic functions, Dover, New York, 1988. MR 92d:46066
[26] K. Jarosz and V. Pathak, Isometries and small bound peturbations of function spaces. In:

Function Spaces, Lecture Notes in Pure and Applied Math., Vol. 136, Marcel Dekker, New
York, 1992, 241–271. MR 93b:47061

[27] R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338. MR
13:256a

[28] E. Kirchberg, On restricted peturbations in inverse images and a description of normalizer
algebras in C∗-algebras, J. Funct. Anal. 129 (1995), 1-34. MR 95m:46094a

[29] L. E. Labuschagne, Analogues of composition operators on non-commutative Hp-spaces, J.
Operator Theory, to appear.

[30] L. E. Labuschagne, Composition operators on non-commutative Lp-spaces, Expo. Math. 17
(1999), 429-468. MR 2001f:46099

[31] C. Le Merdy, An operator space characterization of dual operator algebras, Amer. J. Math.
121 (1999), 55-63. MR 2001f:46086

[32] C. Le Merdy, Finite rank approximations and semidiscreteness for linear operators, Ann.
Inst. Fourier (Grenoble) 49 (1999), 1869-1901. MR 2001b:46092

[33] G. Lumer, Analytic functions and Dirichlet problems, Bull. Amer. Math. Soc. 70 (1964),
98-104. MR 28:1509

[34] M. McAsey, P. Muhly, and K.-S. Saito, Nonselfadjoint crossed products (invariant subspaces
and maximality), Trans. Amer. Math. Soc. 248 (1979), 381-409. MR 80j:46101b

[35] M. Marsalli and G. West, Noncommutative Hp-spaces, J. Operator Theory 40 (1998), 339-
355. MR 2001b:46117

[36] A. Matheson, Isometries into function algebras, Houston J. Math., to appear.
[37] M. Nagasawa, Isomorphisms between commutative Banach algebras with an application to

rings of analytic functions, Kodai Math. Sem. Rep. 11 (1959), 182-188. MR 22:12379
[38] W. P. Novinger, Linear isometries of subspaces of spaces of continuous functions, Studia

Math. 53 (1975), 273-276. MR 54:5818
[39] D. P. O’ Donovan and K. R. Davidson, Isometric images of C∗-algebras, Canad. Math. Bull.

27 (1984), 286-294. MR 85h:46081
[40] V. I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in Math., vol.

146, Longman, London, 1986. MR 88h:46111
[41] G. Pedersen, C∗-algebras and their automorphism groups, Academic Press, London, 1979.

MR 81e:46037
[42] G. Pisier, Introduction to operator space theory, Cambridge University Press, to appear.

(French original, MR 98e:46019)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=25:5186
http://www.ams.org/mathscinet-getitem?mr=54:5843
http://www.ams.org/mathscinet-getitem?mr=2001d:47001
http://www.ams.org/mathscinet-getitem?mr=91c:47086
http://www.ams.org/mathscinet-getitem?mr=2002a:46082
http://www.ams.org/mathscinet-getitem?mr=86j:46058
http://www.ams.org/mathscinet-getitem?mr=53:14137
http://www.ams.org/mathscinet-getitem?mr=81h:46071
http://www.ams.org/mathscinet-getitem?mr=2001a:46057
http://www.ams.org/mathscinet-getitem?mr=26:6820
http://www.ams.org/mathscinet-getitem?mr=92d:46066
http://www.ams.org/mathscinet-getitem?mr=93b:47061
http://www.ams.org/mathscinet-getitem?mr=13:256a
http://www.ams.org/mathscinet-getitem?mr=95m:46094a
http://www.ams.org/mathscinet-getitem?mr=2001f:46099
http://www.ams.org/mathscinet-getitem?mr=2001f:46086
http://www.ams.org/mathscinet-getitem?mr=2001b:46092
http://www.ams.org/mathscinet-getitem?mr=28:1509
http://www.ams.org/mathscinet-getitem?mr=80j:46101b
http://www.ams.org/mathscinet-getitem?mr=2001b:46117
http://www.ams.org/mathscinet-getitem?mr=22:12379
http://www.ams.org/mathscinet-getitem?mr=54:5818
http://www.ams.org/mathscinet-getitem?mr=85h:46081
http://www.ams.org/mathscinet-getitem?mr=88h:46111
http://www.ams.org/mathscinet-getitem?mr=81e:46037
http://www.ams.org/mathscinet-getitem?mr=98e:46019


1646 DAVID P. BLECHER AND LOUIS E. LABUSCHAGNE

[43] G. Pisier and Q. Xu, Noncommutative Lp spaces, Handbook on the geometry of Banach
spaces (Vol. 2), to appear. Ed.: W. B. Johnson and J. Lindenstrauss.

[44] D. Pitts, Factorization problems for nests: factorization methods and characterizations of
the universal factorization property, J. Funct. Anal. 79 (1988), 57-90. MR 90a:47101

[45] Y-t. Poon and Z. J. Ruan, Operator algebras with contractive approximate identities, Canad.
J. Math. 46 (1994), 397-414. MR 95d:47057

[46] S. C. Power, Factorization in analytic operator algebras, J. Funct. Anal. 67 (1986), 413-432.
MR 87k:47040

[47] D. Sarason, Composition operators as integral operators. In: Analysis and partial differential
equations, Marcel Dekker, New York, 1990, 545-565. MR 92a:47040

[48] R. K. Singh and J. S. Manhas, Composition operators on function spaces, North-Holland,
Amsterdam, 1993. MR 95d:47036

[49] T. P. Srinivasan and J-K. Wang, Weak*-Dirichlet algebras. In: Ed. Frank T. Birtel, Function
algebras, Scott Foresman and Co., 1966, 216-249. MR 33:6441

[50] E. L. Stout, The theory of uniform algebras, Bogden and Quigley, Tarrytown-on-Hudson,
NY, 1971. MR 54:11066

[51] I. Suciu, Function algebras, Noordhoff Internat. Pub., Leyden, 1975. MR 51:6428
[52] M. Takesaki, Theory of Operator Algebras I, Springer, New York, 1979. MR 81e:46038
[53] M. Terp, Lp-spaces associated with von Neumann algebras, Copenhagen University, 1981.

[54] J. Tomiyama, Tensor products and pojections of norm one in von Neumann algebras, lecture
notes, Copenhagen University, 1970.

[55] C. Zhang, Representations of operator spaces, J. Operator Theory 33 (1995), 327-351. MR
96h:46092

[56] D. P. Blecher and D. M. Hay, Complete isometries—an illustration of noncommutative func-
tional analysis, Provisionally accepted, Proceedings of the Fourth Conference on Function
Spaces, Contemp. Math., Amer. Math. Soc., Providence, RI.

[57] R. J. Fleming and J. E. Jamison, Isometries on Banach spaces: function spaces, CRC Press,
to appear.

Department of Mathematics, University of Houston, Houston, Texas 77204-3008

E-mail address: dblecher@math.uh.edu

Department of Mathematics, Applied Mathematics and Astronomy, P.O. Box 392,

0003 UNISA, South Africa

E-mail address: labusle@unisa.ac.za

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=90a:47101
http://www.ams.org/mathscinet-getitem?mr=95d:47057
http://www.ams.org/mathscinet-getitem?mr=87k:47040
http://www.ams.org/mathscinet-getitem?mr=92a:47040
http://www.ams.org/mathscinet-getitem?mr=95d:47036
http://www.ams.org/mathscinet-getitem?mr=33:6441
http://www.ams.org/mathscinet-getitem?mr=54:11066
http://www.ams.org/mathscinet-getitem?mr=51:6428
http://www.ams.org/mathscinet-getitem?mr=81e:46038
http://www.ams.org/mathscinet-getitem?mr=96h:46092

	1. Introduction
	Part I. Characterizations of complete isometries
	2. General Banach-Stone theorems[1] between non-selfadjoint operator algebras
	3. Characterizations of particular classes of isometries
	Part II. Logmodularity and the C*-envelope
	4. Logmodularity and representing measures
	5. Conditional expectations and noncommutative H spaces
	Acknowledgments

	References

