Logmodularity and isometries of operator algebras
HTML articles powered by AMS MathViewer
- by David P. Blecher and Louis E. Labuschagne
- Trans. Amer. Math. Soc. 355 (2003), 1621-1646
- DOI: https://doi.org/10.1090/S0002-9947-02-03195-1
- Published electronically: December 4, 2002
- PDF | Request permission
Abstract:
We generalize some facts about function algebras to operator algebras, using the “noncommutative Shilov boundary” or “$C^*$-envelope” first considered by Arveson. In the first part we study and characterize complete isometries between operator algebras. In the second part we introduce and study a notion of logmodularity for operator algebras. We also give a result on conditional expectations. Many miscellaneous applications are provided.References
- M. Anoussis and E. G. Katsoulis, Compact operators and the geometric structure of nest algebras, Indiana Univ. Math. J. 45 (1996), no. 4, 1175–1191. MR 1444482, DOI 10.1512/iumj.1996.45.1974
- Jesús Araujo and Juan J. Font, Linear isometries between subspaces of continuous functions, Trans. Amer. Math. Soc. 349 (1997), no. 1, 413–428. MR 1373627, DOI 10.1090/S0002-9947-97-01713-3
- Jonathan Arazy and Baruch Solel, Isometries of nonselfadjoint operator algebras, J. Funct. Anal. 90 (1990), no. 2, 284–305. MR 1052336, DOI 10.1016/0022-1236(90)90085-Y
- G. V. Radzievskiĭ, On the completeness of root vectors of a biquadratic operator pencil, Nelīnīĭnī Koliv. 2 (1998), 90–117 (Russian, with English and Ukrainian summaries). MR 1784345
- William B. Arveson, Analyticity in operator algebras, Amer. J. Math. 89 (1967), 578–642. MR 223899, DOI 10.2307/2373237
- William B. Arveson, Subalgebras of $C^{\ast }$-algebras, Acta Math. 123 (1969), 141–224. MR 253059, DOI 10.1007/BF02392388
- William Arveson, Subalgebras of $C^{\ast }$-algebras. II, Acta Math. 128 (1972), no. 3-4, 271–308. MR 394232, DOI 10.1007/BF02392166
- David P. Blecher, Commutativity in operator algebras, Proc. Amer. Math. Soc. 109 (1990), no. 3, 709–715. MR 1009985, DOI 10.1090/S0002-9939-1990-1009985-X
- David P. Blecher, Modules over operator algebras, and the maximal $C^\ast$-dilation, J. Funct. Anal. 169 (1999), no. 1, 251–288. MR 1726755, DOI 10.1006/jfan.1999.3491
- David P. Blecher, The Shilov boundary of an operator space and the characterization theorems, J. Funct. Anal. 182 (2001), no. 2, 280–343. MR 1828796, DOI 10.1006/jfan.2000.3734
- D. P. Blecher, Multipliers and dual operator algebras, J. Funct. Anal. 183 (2001), 498-525.
- D. P. Blecher and D. Hay, Complete isometries into $C^*$-algebras, preprint (March ’02), http://front.math.ucdavis.edu/math.OA/0203182 .
- D. P. Blecher and K. Jarosz, Isomorphisms of function modules, and generalized approximation in modulus, Trans. Amer. Math. Soc. 354 (2002), 3663-3701.
- Lennart Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547–559. MR 141789, DOI 10.2307/1970375
- Man Duen Choi and Edward G. Effros, The completely positive lifting problem for $C^*$-algebras, Ann. of Math. (2) 104 (1976), no. 3, 585–609. MR 417795, DOI 10.2307/1970968
- C-H. Chu and N-C. Wong, Isometries between $C^{*}$-algebras, Rev. Mat. Iberoamericana, to appear.
- John B. Conway, A course in operator theory, Graduate Studies in Mathematics, vol. 21, American Mathematical Society, Providence, RI, 2000. MR 1721402, DOI 10.1090/gsm/021
- Edward G. Effros and Zhong-Jin Ruan, On nonselfadjoint operator algebras, Proc. Amer. Math. Soc. 110 (1990), no. 4, 915–922. MR 986648, DOI 10.1090/S0002-9939-1990-0986648-8
- Edward G. Effros and Zhong-Jin Ruan, Operator spaces, London Mathematical Society Monographs. New Series, vol. 23, The Clarendon Press, Oxford University Press, New York, 2000. MR 1793753
- Mohamad El-Gebeily and John Wolfe, Isometries of the disc algebra, Proc. Amer. Math. Soc. 93 (1985), no. 4, 697–702. MR 776205, DOI 10.1090/S0002-9939-1985-0776205-9
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- Masamichi Hamana, Injective envelopes of operator systems, Publ. Res. Inst. Math. Sci. 15 (1979), no. 3, 773–785. MR 566081, DOI 10.2977/prims/1195187876
- Masamichi Hamana, Triple envelopes and Šilov boundaries of operator spaces, Math. J. Toyama Univ. 22 (1999), 77–93. MR 1744498
- Kenneth Hoffman, Analytic functions and logmodular Banach algebras, Acta Math. 108 (1962), 271–317. MR 149330, DOI 10.1007/BF02545769
- Kenneth Hoffman, Banach spaces of analytic functions, Dover Publications, Inc., New York, 1988. Reprint of the 1962 original. MR 1102893
- Krzysztof Jarosz and Vijay D. Pathak, Isometries and small bound isomorphisms of function spaces, Function spaces (Edwardsville, IL, 1990) Lecture Notes in Pure and Appl. Math., vol. 136, Dekker, New York, 1992, pp. 241–271. MR 1152351
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Eberhard Kirchberg, On restricted perturbations in inverse images and a description of normalizer algebras in $C^*$-algebras, J. Funct. Anal. 129 (1995), no. 1, 1–34. MR 1322640, DOI 10.1006/jfan.1995.1040
- L. E. Labuschagne, Analogues of composition operators on non-commutative $H^p$-spaces, J. Operator Theory, to appear.
- L. E. Labuschagne, Composition operators on non-commutative $L_p$-spaces, Exposition. Math. 17 (1999), no. 5, 429–467. MR 1733881
- Christian Le Merdy, An operator space characterization of dual operator algebras, Amer. J. Math. 121 (1999), no. 1, 55–63. MR 1704997
- Christian Le Merdy, Finite rank approximation and semidiscreteness for linear operators, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 6, 1869–1901. MR 1738069
- G. Lumer, Analytic functions and Dirichlet problem, Bull. Amer. Math. Soc. 70 (1964), 98–104. MR 158283, DOI 10.1090/S0002-9904-1964-11036-3
- M. McAsey, P. Muhly, and K.-S. Saito, Nonselfadjoint crossed products, Hilbert space operators (Proc. Conf., Calif. State Univ., Long Beach, Calif., 1977) Lecture Notes in Math., vol. 693, Springer, Berlin, 1978, pp. 121–124. MR 526541
- Antonio A. Pulgarín, Characterization of dual extensions in the category of Banach spaces, Divulg. Mat. 7 (1999), no. 2, 133–142 (English, with English and Spanish summaries). MR 1741891
- A. Matheson, Isometries into function algebras, Houston J. Math., to appear.
- Masao Nagasawa, Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, K\B{o}dai Math. Sem. Rep. 11 (1959), 182–188. MR 121645
- W. P. Novinger, Linear isometries of subspaces of spaces of continuous functions, Studia Math. 53 (1975), no. 3, 273–276. MR 417770, DOI 10.4064/sm-53-3-273-276
- Donal P. O’Donovan and Kenneth R. Davidson, Isometric images of $C^{\ast }$ algebras, Canad. Math. Bull. 27 (1984), no. 3, 286–294. MR 749634, DOI 10.4153/CMB-1984-043-5
- Vern I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in Mathematics Series, vol. 146, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986. MR 868472
- Gert K. Pedersen, $C^{\ast }$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006
- Nelson Dunford, A mean ergodic theorem, Duke Math. J. 5 (1939), 635–646. MR 98
- G. Pisier and Q. Xu, Noncommutative $L^p$ spaces, Handbook on the geometry of Banach spaces (Vol. 2), to appear. Ed.: W. B. Johnson and J. Lindenstrauss.
- Gaston Mandata N’Guérékata, Some remarks on asymptotically almost automorphic functions, Riv. Mat. Univ. Parma (4) 13 (1987), 301–303 (1988). MR 977682
- Yiu Tung Poon and Zhong-Jin Ruan, Operator algebras with contractive approximate identities, Canad. J. Math. 46 (1994), no. 2, 397–414. MR 1271223, DOI 10.4153/CJM-1994-021-0
- S. C. Power, Factorization in analytic operator algebras, J. Funct. Anal. 67 (1986), no. 3, 413–432. MR 845465, DOI 10.1016/0022-1236(86)90033-9
- Donald Sarason, Composition operators as integral operators, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., vol. 122, Dekker, New York, 1990, pp. 545–565. MR 1044808
- R. K. Singh and J. S. Manhas, Composition operators on function spaces, North-Holland Mathematics Studies, vol. 179, North-Holland Publishing Co., Amsterdam, 1993. MR 1246562
- T. P. Srinivasan and Ju-kwei Wang, Weak ${}^{\ast }$-Dirichlet algebras, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965) Scott-Foresman, Chicago, Ill., 1966, pp. 216–249. MR 0198282
- Edgar Lee Stout, The theory of uniform algebras, Bogden & Quigley, Inc., Publishers, Tarrytown-on-Hudson, N.Y., 1971. MR 0423083
- Ion Suciu, Function algebras, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leyden, 1975. Translated from the Romanian by Mihaela Mihăilescu. MR 0370199
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
- M. Terp, $L^p$-spaces associated with von Neumann algebras, Copenhagen University, 1981.
- J. Tomiyama, Tensor products and pojections of norm one in von Neumann algebras, lecture notes, Copenhagen University, 1970.
- Chun Zhang, Representations of operator spaces, J. Operator Theory 33 (1995), no. 2, 327–351. MR 1354984
- D. P. Blecher and D. M. Hay, Complete isometries—an illustration of noncommutative functional analysis, Provisionally accepted, Proceedings of the Fourth Conference on Function Spaces, Contemp. Math., Amer. Math. Soc., Providence, RI.
- R. J. Fleming and J. E. Jamison, Isometries on Banach spaces: function spaces, CRC Press, to appear.
Bibliographic Information
- David P. Blecher
- Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204-3008
- Email: dblecher@math.uh.edu
- Louis E. Labuschagne
- Affiliation: Department of Mathematics, Applied Mathematics and Astronomy, P.O. Box 392, 0003 UNISA, South Africa
- MR Author ID: 254377
- Email: labusle@unisa.ac.za
- Received by editor(s): May 15, 2002
- Received by editor(s) in revised form: September 4, 2002
- Published electronically: December 4, 2002
- Additional Notes: This research was supported in part by grants from the National Science Foundation and the University of South Africa.
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 1621-1646
- MSC (2000): Primary 46L07, 46J10, 46L52, 47L30; Secondary 46E25, 47B33
- DOI: https://doi.org/10.1090/S0002-9947-02-03195-1
- MathSciNet review: 1946408