## The $D$–module structure of $R[F]$–modules

HTML articles powered by AMS MathViewer

- by Manuel Blickle PDF
- Trans. Amer. Math. Soc.
**355**(2003), 1647-1668 Request permission

## Abstract:

Let $R$ be a regular ring, essentially of finite type over a perfect field $k$. An $R$–module $\mathcal {M}$ is called a unit $R[F]$–module if it comes equipped with an isomorphism $F^{e*} \mathcal {M} \to \mathcal {M}$, where $F$ denotes the Frobenius map on $\operatorname {Spec}R$, and $F^{e*}$ is the associated pullback functor. It is well known that $\mathcal {M}$ then carries a natural $D_R$–module structure. In this paper we investigate the relation between the unit $R[F]$–structure and the induced $D_R$–structure on $\mathcal {M}$. In particular, it is shown that if $k$ is algebraically closed and $\mathcal {M}$ is a simple finitely generated unit $R[F]$–module, then it is also simple as a $D_R$–module. An example showing the necessity of $k$ being algebraically closed is also given.## References

- Pierre Berthelot,
*${\scr D}$-modules arithmétiques. I. Opérateurs différentiels de niveau fini*, Ann. Sci. École Norm. Sup. (4)**29**(1996), no. 2, 185–272 (French, with English summary). MR**1373933** - Pierre Berthelot,
*$\scr D$-modules arithmétiques. II. Descente par Frobenius*, Mém. Soc. Math. Fr. (N.S.)**81**(2000), vi+136 (French, with English and French summaries). MR**1775613** - Manuel Blickle.
*The intersection homology ${D}$–module in finite characteristic*. Ph.D. thesis, University of Michigan, 2001. arXiv:math.AG/0110244. - Manuel Blickle. Tight closure and the intersection homology $D$–module in finite characteristic. in preparation, 2002.
- Rikard Bøgvad,
*Some results on $\scr D$-modules on Borel varieties in characteristic $p>0$*, J. Algebra**173**(1995), no. 3, 638–667. MR**1327873**, DOI 10.1006/jabr.1995.1107 - Tadasi Nakayama,
*On Frobeniusean algebras. I*, Ann. of Math. (2)**40**(1939), 611–633. MR**16**, DOI 10.2307/1968946 - J. Dixmier,
*Représentations irréductibles des algèbres de Lie nilpotentes*, An. Acad. Brasil. Ci.**35**(1963), 491–519 (French). MR**182682** - David Eisenbud,
*Commutative algebra*, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR**1322960**, DOI 10.1007/978-1-4612-5350-1 - Mathew Emerton and Mark Kisin. Riemann–Hilbert correspondence for unit $\mathcal {F}$-crystals. I. in preperation, 1999.
- Mathew Emerton and Mark Kisin. Riemann–Hilbert correspondence for unit $\mathcal {F}$-crystals. II. in preperation, 2000.
- Burkhard Haastert,
*Über Differentialoperatoren und $\textbf {D}$-Moduln in positiver Charakteristik*, Manuscripta Math.**58**(1987), no. 4, 385–415 (German, with English summary). MR**894862**, DOI 10.1007/BF01277602 - Burkhard Haastert,
*On direct and inverse images of ${\scr D}$-modules in prime characteristic*, Manuscripta Math.**62**(1988), no. 3, 341–354. MR**966631**, DOI 10.1007/BF01246838 - Craig L. Huneke and Rodney Y. Sharp,
*Bass numbers of local cohomology modules*, Trans. Amer. Math. Soc.**339**(1993), no. 2, 765–779. MR**1124167**, DOI 10.1090/S0002-9947-1993-1124167-6 - Gennady Lyubeznik,
*Finiteness properties of local cohomology modules (an application of $D$-modules to commutative algebra)*, Invent. Math.**113**(1993), no. 1, 41–55. MR**1223223**, DOI 10.1007/BF01244301 - Gennady Lyubeznik,
*$F$-modules: applications to local cohomology and $D$-modules in characteristic $p>0$*, J. Reine Angew. Math.**491**(1997), 65–130. MR**1476089**, DOI 10.1515/crll.1997.491.65 - Gennady Lyubeznik,
*Finiteness properties of local cohomology modules: a characteristic-free approach*, J. Pure Appl. Algebra**151**(2000), no. 1, 43–50. MR**1770642**, DOI 10.1016/S0022-4049(99)00080-8 - Gennady Lyubeznik,
*Injective dimension of $D$-modules: a characteristic-free approach*, J. Pure Appl. Algebra**149**(2000), no. 2, 205–212. MR**1757731**, DOI 10.1016/S0022-4049(98)00175-3 - Daniel Quillen,
*On the endomorphism ring of a simple module over an enveloping algebra*, Proc. Amer. Math. Soc.**21**(1969), 171–172. MR**238892**, DOI 10.1090/S0002-9939-1969-0238892-4 - S. P. Smith,
*Differential operators on the affine and projective lines in characteristic $p>0$*, Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin, 37ème année (Paris, 1985) Lecture Notes in Math., vol. 1220, Springer, Berlin, 1986, pp. 157–177. MR**926303**, DOI 10.1007/BFb0099511 - S. P. Smith,
*The global homological dimension of the ring of differential operators on a nonsingular variety over a field of positive characteristic*, J. Algebra**107**(1987), no. 1, 98–105. MR**883872**, DOI 10.1016/0021-8693(87)90076-7 - Amnon Yekutieli,
*An explicit construction of the Grothendieck residue complex*, Astérisque**208**(1992), 127 (English, with French summary). With an appendix by Pramathanath Sastry. MR**1213064**

## Additional Information

**Manuel Blickle**- Affiliation: Universität Essen, FB6 Mathematik, 45117 Essen, Germany
- Email: manuel.blickle@uni-essen.de
- Received by editor(s): May 10, 2002
- Received by editor(s) in revised form: July 10, 2002
- Published electronically: November 22, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**355**(2003), 1647-1668 - MSC (2000): Primary 13A35, 16S99, 16S32
- DOI: https://doi.org/10.1090/S0002-9947-02-03197-5
- MathSciNet review: 1946409